
Abstract: Congenital heart disease affects 1 in 100 infants and is the leading cause of infant mortality in the US. Computational modeling is particularly valuable in this heterogeneous and high-risk population because of the need for personalized treatment planning. We will present recent work extending traditional hemodynamics simulations to include multiple physical processes and cardiac function in pediatric cardiology. In particular, we will discuss: 1) melding constrained mixture models of vascular growth and remodeling with patient specific finite element simulations, and 2) multi-physics cardiac simulations incorporating electrophysiology, active contraction and fluid structure interaction. Novel algorithms for generating synthetic vascular networks for 3D bioprinting applications and simulating tissue perfusion will also be described. We will finally describe open-source software and data resources available via the SimVascular project and the Vascular Model Repository.
Bio: Alison Marsden is the Douglass M. and Nola Leishman Professor of Cardiovascular Disease in the Departments of Pediatrics, Bioengineering, and, by courtesy, Mechanical Engineering at Stanford University. She is a member of the Institute for Mathematical and Computational Engineering. From 2007-2015 she was a faculty member in Mechanical and Aerospace Engineering at UCSD. She graduated with a BSE degree in Mechanical Engineering from Princeton University in 1998, and a PhD in Mechanical Engineering from Stanford in 2005. She was a postdoctoral fellow at Stanford University in Bioengineering from 2005-07. She was the recipient of a Burroughs Wellcome Fund Career Award at the Scientific Interface in 2007, an NSF CAREER award in 2011. She was elected fellow of AIMBE and SIAM in 2018, the APS DFD in 2020, and BMES in 2021. She is the 2023 recipient of the Van C. Mow medal from the ASME Bioengineering Division. She has published over 170 journal articles and holds leadership roles in several scientific societies. Her research focuses on the development of numerical methods for cardiovascular biomechanics and application of engineering methods to impact patient care in cardiovascular surgery and congenital heart disease.
Host: Rajat Mittal