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Abstract

This thesis introduces a novel method for state estimation in quadruped

robots that leverages proprioceptive sensor data, including readings from

one body-mounted inertial measurement unit (IMU) and four additional

IMUs attached to the robot’s calf links. This sensor setup captures dynamic

movements of both the body and legs, complemented by data from joint

encoders. An extended Kalman filter (EKF) integrates these observations

to estimate the robot’s states relative to the world frame. To eliminate the

dependence on motion capture systems or other vision-based sensors, this

study employs 1D convolutional neural networks (CNNs) to estimate nec-

essary measurements using only proprioceptive data. Experimental results

using real-world data from a Unitree Go1 robot validate the effectiveness of

our proprioception-based approach, demonstrating that it achieves accuracy

comparable to traditional EKF methods that rely on motion capture systems,

thus providing a promising alternative for robotic state estimation without

the need for external visual inputs.
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Chapter 1

Introduction

1.1 Background

In recent years, quadruped robots have gained significant popularity due to

their agility on challenging terrains and their capability to execute complex

tasks. Outstanding examples include Boston Dynamics’ Spot, which has been

used for industrial inspections and public safety (Bouman et al., 2020); ANY-

mal by ANYbotics, known for its deployment in hazardous environments for

maintenance and emergency response (Hutter et al., 2017); and the Unitree

Go1, which is acclaimed for personal assistance and entertainment purposes

(Romanov, Gyrichidi, and Romanov, 2023). These robots exemplify the ad-

vanced mobility and adaptability that quadrupeds can offer across diverse

applications, they are integral to advancements in automated systems, where

they are employed in diverse scenarios ranging from disaster response and in-

dustrial automation to planetary exploration and healthcare assistance. Their

ability to maneuver through rubble, climb steep slopes, and interact with

environments designed for humans makes them particularly valuable in fields

1



where human intervention is risky or impractical (Biswal and Mohanty, 2021).

Figure 1.1: Examples of quadruped robots: Spot1, ANYmal2, and Unitree Go23

Perception, planning, and control form the three foundational pillars of

robotic autonomy, each facilitating distinct but interconnected functions that

enable robots to operate independently and effectively in diverse environ-

ments. Perception involves the real-time acquisition and processing of sensory

data to discern the robot’s surroundings and its own state within that environ-

ment. This capability is critical for recognizing objects, navigating spaces, and

understanding terrain. For example, a robotic vacuum uses sensors to detect

walls and obstacles, while autonomous vehicles employ Lidar and cameras

to map their surroundings and detect other users on the road (Guastella and

Muscato, 2021). Planning refers to the process by which a robot uses the

information obtained from perception to formulate strategies for achieving

its goals. This includes determining the sequence of actions or movements

necessary to navigate from one point to another while avoiding obstacles,

optimizing paths, or strategizing interaction with objects and other agents.

An industrial robot arm, for instance, plans its movements to assemble parts

1https://bostondynamics.com/solutions/inspection/thermal/
2https://www.dpaonthenet.net/article/199317/Robots-to-team-up-on-trip-to-the-Moon.

aspx
3https://eu.robotshop.com/products/roboworks-unitree-go2-ent

2
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Figure 1.2: Robotics principle flowchart

based on the perceived locations of these components. Control is the execu-

tion phase where the robot applies the planned actions to interact with the

environment. This involves precise manipulation of the robot’s mechanisms,

such as motors and other actuators, to achieve desired outcomes. Control

systems ensure that movements are carried out smoothly and adjust dynami-

cally to any changes in the environment or internal conditions. For example,

drones control their flight patterns through rapid adjustments to rotor speeds,

enabling stable flight and agile maneuvers in response to wind or obstacle

avoidance commands. Together, these pillars enable a robot to perform com-

plex tasks autonomously by integrating sensory data with decision-making

processes and physical actions, thereby adapting to new environments and

challenges.

Within the domain of perception, state estimation plays a pivotal role by

providing critical information about the robot’s location, orientation, and the

kinematic states of its various components, such as limbs and joints. Accurate

state estimation enables a robot to determine its body configuration in space,

assess its stability, and adapt its movements to environmental changes and
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internal dynamics. Effective state estimation enhances navigational accuracy,

allowing the robot to make informed decisions and improve its ability to

navigate complex environments. It also supports robust motion planning by

providing accurate data on joint angles and limb positions, which is essential

for developing dynamic motion plans that can adapt to both planned tasks and

unforeseen obstacles. Furthermore, state estimation is critical for maintaining

stability and safety, as it provides vital feedback on the robot’s balance and

stability metrics, which are crucial for preventing falls and ensuring safe

interactions with both the environment and human operators (Bloesch, 2017).

Additionally, by improving the reliability of internal sensors and processing

methods, robots can operate independently in environments where external

systems like GPS or visual markers are unavailable.

The challenges of state estimation for quadruped robots are notably dis-

tinct due to their complex locomotion dynamics and variable interaction with

the environment. Unlike wheeled robots, quadrupeds must constantly adjust

to varied terrain types—from flat, predictable surfaces to irregular, off-road

conditions—which requires continuously updating their body orientation and

foot placement for balance and propulsion (Bloesch, 2017; Bahçeci and Erbatur,

2023). The need to maintain stability while navigating such uneven terrains

complicates the state estimation process. Moreover, the integration of multi-

ple sensors to achieve reliable estimation introduces issues of sensor fusion

complexity and the potential for conflicting data, particularly under dynamic

conditions where rapid movements or external disturbances occur. Addition-

ally, the real-time processing demands for state estimation in quadrupeds are
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significant, as delays or inaccuracies in data interpretation can lead to falls or

navigational errors, posing risks to both the robot and its surroundings.

1.2 Overview of Existing Methods

This thesis examines the field of state estimation for robotics, with a partic-

ular focus on quadruped robots. State estimation is critical for autonomous

navigation and interaction within various environments, utilizing algorithms

to deduce a robot’s state—such as position, velocity, and orientation—from

sensor data. Traditional methods, primarily various forms of the Kalman filter,

have been foundational in addressing the complex dynamics of quadruped

robots (Chen, 2012). These methods integrate data from multiple sensors to

improve accuracy despite noisy inputs.

Inertial measurement units (IMUs) play a crucial role in this domain by

providing acceleration and angular velocity from accelerometers and gyro-

scopes, particularly useful in environments where external references are

unavailable. However, IMUs can suffer from data drift, leading to accumu-

lating errors (Bloesch et al., 2013). Recent advances in machine learning,

especially in learning-based sensor fusion using methods like convolutional

neural networks (CNNs), offer promising ways to overcome these limita-

tions (BROSSARD and BONNABEL, 2019). These innovative approaches

can enhance the robustness and accuracy of state estimations under dynamic

conditions.

The Extended Kalman Filter (EKF) remains a staple in robotic state esti-

mation, adept at handling non-linear system dynamics through linearization

5



techniques. Yet, its effectiveness can diminish with large non-linearities or

inaccurate model assumptions, paving the way for hybrid approaches that

integrate EKF with modern machine learning techniques for improved perfor-

mance.

This review sets the stage for introducing a novel state estimation frame-

work in this thesis, which combines the precision of traditional methods with

the adaptability of machine learning to better support autonomous navigation

in quadruped robots. The primary aim of this research is to advance the field

of robotic state estimation through the development and validation of a novel

deep learning approach, specifically focusing on the following objectives:

• Develop a Proprioception-based Deep Learning Model: To implement

a 1D convolutional neural network (CNN) that utilizes proprioceptive

sensor data from inertial measurement units (IMUs) to estimate the yaw

angles of a quadruped robot. This model aims to leverage the temporal

nature of IMU data to enhance the estimation accuracy beyond what

is achievable with traditional filtering techniques such as the Extended

Kalman Filter (EKF).

• Evaluate Model Performance: To test the developed model using real-

world data collected from a Unitree Go1 robot. This evaluation will

compare the performance of CNN against traditional state estimation

methods that rely on motion capture systems. The criteria for compari-

son will include accuracy, reliability, and computational efficiency, with

the goal of demonstrating that CNN can provide a viable alternative for

applications where external visual inputs are unavailable.
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Through these objectives, this thesis seeks to contribute a robust solution

for state estimation that could potentially reduce the dependence on external

sensors and improve the operational versatility of autonomous robots.

1.3 Thesis Structure

The structure of this thesis is designed to provide a comprehensive overview

of the research conducted, as well as detailed insights into the methodologies

employed and the findings obtained. The thesis is organized into six chapters,

as follows:

Chapter 1: Introduction - This chapter introduces the research topic, out-

lines the research problem, and discusses the significance of the study. It sets

the stage for the subsequent chapters by providing a background on the need

for advanced state estimation techniques in robotic systems.

Chapter 2: Literature Review - A review of the existing literature related

to state estimation techniques in robotics, focusing particularly on methods

employing proprioceptive sensors and deep learning models. This chapter

highlights the strengths and limitations of current approaches and justifies the

need for the proposed research.

Chapter 3: Methodology - Detailed description of the research methodol-

ogy, including the details of the 1D convolutional neural network, the data

acquisition process using the Unitree Go1 robot, and the methods used for

data processing and model training.

Chapter 4: Experimental Setup - Explanation of the experimental setup,

including the configuration of the physical and software environments, the

7



calibration of sensors, and the procedures followed during the experimental

trials.

Chapter 5: Results and Discussion - Presentation and analysis of the results

obtained from the experimental validation. This chapter assesses the perfor-

mance of the CNN model in comparison to traditional methods, discussing

the implications of the findings in the context of robotic perception and state

estimation. This chapter also outlines potential avenues for future research,

suggesting enhancements to the model and additional applications in other

areas of robotics.
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Chapter 2

Literature review

This chapter explores the current state of research in the field of state estima-

tion for robotics, particularly focusing on quadruped robots. It covers key

areas including traditional state estimation approaches, the role of inertial

measurement units (IMUs), and recent advancements in learning-based sensor

fusion techniques. This review provides a foundation for understanding the

context and technical challenges addressed in this thesis.

2.1 Legged Robot State Estimation

State estimation in legged robots is a critical component for achieving au-

tonomous navigation and interaction within complex environments. Unlike

wheeled robots, legged robots encounter a variety of terrains that impose

unique demands on the estimation process, necessitating sophisticated meth-

ods to accurately predict and respond to dynamic conditions.

Legged locomotion introduces complex variables into state estimation

due to the intermittent nature of foot contacts and the diverse properties
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of different terrains. Fahmi, Fink, and Semini, 2021 highlight the impact of

soft terrain on state estimation, where traditional methods designed for rigid

surfaces fail to account for the additional uncertainties introduced by softer

materials, leading to increased estimator drift. This underlines a key challenge:

adapting state estimation methods to function reliably across variable terrain

types.

Proprioceptive sensors, such as inertial measurement units (IMUs) and

joint encoders, are integral to the state estimation of legged robots. These

sensors provide crucial data on the robot’s motion and orientation, which

are vital for maintaining balance and navigating environments without exter-

nal visual aids. The research by Yang et al., 2019 demonstrates the efficacy

of integrating proprioceptive sensor data through the Contact-Centric Leg

Odometry (COCLO) method, which enhances estimation precision by focus-

ing on leg contact dynamics. This approach shows promise in improving state

estimation accuracy over IMU-centric methods, particularly in challenging

terrains.

The fusion of data from multiple sensory sources marks a significant

advancement in state estimation technology. For example, the VILENS system

described by Wisth, Camurri, and Fallon, 2022 integrates visual, inertial, lidar,

and leg odometry data using a factor graph approach. This multimodal

fusion not only compensates for the weaknesses of individual sensors but

also significantly reduces the estimation errors associated with leg odometry,

particularly in adverse conditions. This demonstrates the potential of hybrid

sensor systems to provide robust state estimation solutions that can adapt to a
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range of environmental challenges.

The field of state estimation for legged robots is evolving, with ongoing

research focused on overcoming the inherent challenges posed by complex

and varied terrains. By leveraging advances in sensor technology and compu-

tational methods, such as machine learning and sensor fusion, researchers are

paving the way for more autonomous and effective robotic systems capable of

operating in unpredictable settings.

2.2 State Estimation Using Proprioceptive Sensors

Proprioceptive sensors, such as IMUs and joint encoders, are fundamental in

the state estimation of quadruped robots, particularly when external sensory

inputs are limited or unavailable. These sensors provide critical data on

internal state dynamics, which are essential for the autonomous operation of

robots in diverse environments.

A significant advancement in this area is the development of the invariant

extended Kalman filter (EKF) by Barrau and Bonnabel, 2015; Zhang et al.,

2023. This method enhances the robustness and accuracy of state estimation

in dynamic environments by leveraging the mathematical properties of the

invariant EKF. This approach specifically addresses the challenges of limited

accuracy and high noise levels typical of proprioceptive sensors, making it a

potent tool for complex robotic applications.

Camurri et al., 2017 introduced a probabilistic method to estimate contact

and detect impact events using internal force sensors, which marks a pivotal

shift from traditional external contact sensors. This technique significantly
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improves the reliability of state estimation by providing precise information on

contact points with the environment, which is crucial for executing dynamic

maneuvers and adapting to unexpected terrain changes.

The use of factor graph optimization in state estimation frameworks, as

explored by Wisth, Camurri, and Fallon, 2019, offers another robust approach.

This method integrates various proprioceptive data sources to maintain ac-

curate robot state awareness, particularly in environments where external

sensors are prone to failure or provide unreliable data. Such optimization tech-

niques are vital for enhancing the stability and reliability of state estimations

across challenging conditions.

While model-based approaches using proprioceptive sensors are advanc-

ing, they still face significant challenges, including the integration of disparate

sensor data and the need for precise sensor calibration.

2.3 Learning-Based Sensor Fusion Approaches

Sensor fusion is a critical technique for enhancing the robustness and accuracy

of state estimation in quadruped robots. By combining data from multi-

ple sources, these systems can compensate for the limitations of individual

sensors, particularly in challenging environments where one type of sensor

might be insufficient or unreliable. This section explores several innovative

approaches to learning-based sensor fusion in quadruped state estimation.

A prominent example of advanced sensor fusion is the VILENS system

mentioned above. The primary goal of VILENS is to ensure reliable operation

12



even when individual sensor modalities fail or underperform due to envi-

ronmental conditions. Extensive validation has demonstrated that VILENS

significantly reduces translational and rotational errors across various ter-

rains, underscoring the benefits of a multimodal fusion approach in achieving

high-fidelity state estimation.

The calibration of multiple cameras on a legged robot is another area

where sensor fusion plays a vital role. Reinke, Camurri, and Semini, 2019

address this by implementing a factor graph approach to optimize the extrinsic

calibration between multiple cameras and the robot base. This method not

only improves the accuracy of visual feedback but also enhances overall

sensor fusion, contributing to more precise navigation and interaction within

complex environments.

Yao and Jia, 2021 present a state estimation algorithm that exemplifies

the integration of a wide array of sensors, including IMUs, joint encoders,

cameras, and LIDAR. This comprehensive fusion is designed to provide robust

state estimation critical for maintaining stable locomotion over varied terrains.

By pooling information from these diverse sources, the algorithm enhances

the robot’s ability to adapt to different environmental conditions, improving

both the reliability and accuracy of its navigational capabilities.

Despite the advancements in sensor fusion technologies, several challenges

remain, particularly concerning the computational demands and the real-

time processing capabilities required to handle data from multiple sensors

simultaneously.
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Building on the foundational work explored, our approach to state estima-

tion in quadruped robots proposes a novel method that leverages advanced

sensor fusion and machine learning techniques. Our goal is to overcome

the existing limitations noted in traditional and learning-based sensor fusion

methods by introducing an innovative system design that optimizes accuracy,

robustness, and computational efficiency. We choose proprioceptive sensors

over vision-based methods because they provide consistent and reliable data

under conditions where optical sensors might be impaired by poor light-

ing, occlusions, or reflective surfaces. This reliance on proprioceptive data

allows for more stable and continuous state estimation, essential for navigat-

ing unpredictable or complex environments where visual cues are limited or

deceptive.
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Chapter 3

Methodology

3.1 Learning-assisted Multi-IMU Proprioceptive State
Estimation

In the pioneering work of Yang et al., 2023, the Extended Kalman Filter (EKF)

is employed as the state estimator, significantly enhancing state estimation by

incorporating dynamic foot movements and multi-sensor integration. This

methodology offers robustness against the oversimplified assumptions inher-

ent in previous models, providing a sophisticated and reliable framework

for robotic navigation, especially in complex environments where interaction

dynamics are paramount.

However, a notable limitation of the model arises from its reliance on

yaw angle measurements provided by a motion capture system. These mea-

surements are critical because yaw angles are not observable solely from the

body IMU data (Bloesch, 2017). The dependency on motion capture systems,

which are typically unavailable in outdoor environments or general experi-

mental setups, restricts the model’s applicability. To address this limitation,

15



Figure 3.1: The schematic of the proposed method

our method employs a learning-based approach to predict yaw angles from

available data sources, including IMUs, joint motor encoders, and foot contact

sensors. This predictive capability enables the replacement of direct motion

capture measurements, thus fitting seamlessly within the multi-IMU odome-

try framework and broadening the model’s applicability to outdoor and less

controlled environments.

This chapter outlines the comprehensive methodology employed in this

study to develop and validate a learning-assisted state estimation framework

for quadruped robots as shown in 3.1. The methodology is divided into four

main sections: system design and data collection, neural network architecture,

Extended Kalman Filter (EKF) implementation, and analysis of outputs.
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Figure 3.2: Left: A Unitree Go1 robot equipped with foot IMUs. Right: Position
estimates while walking over a 160m loop trajectory. (Yang et al., 2023)

3.2 System Design and Data Collection

The system design and setup for the Multi-IMU Proprioceptive Odometry

(MIPO) introduced by Yang et al., 2023. focus on enhancing the state estima-

tion of legged robots using proprioceptive sensors, specifically in scenarios

where external systems like GPS are not available. Their novel proprioceptive

sensing solution adds an additional IMU to each calf link of the robot, just

above the foot, alongside the conventional sensors of one body IMU and joint

encoders.

The inclusion of these additional IMUs allows the system to determine foot

contact modes and detect slips without the need for tactile or pressure-based

foot contact sensors. The Extended Kalman Filter (EKF) fuses data from all

sensors to estimate the robot’s body and foot positions and velocities in the

world frame.

The MIPO system achieves accurate, low-drift, long-term position and

velocity estimation while requiring minimal additional hardware and com-

putational resources, a significant improvement over conventional methods.
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The proposed approach, validated through hardware experiments, is demon-

strated to reduce position drift by nearly an order of magnitude compared to

traditional proprioceptive odometry (PO) approaches as shown in Figure 3.2.

The MIPO design strategically places additional IMUs without substan-

tially altering the robot’s form factor. These IMUs were synchronized to

operate at the same frequency as the robot’s built-in sensors. Data from the

IMUs and other sensors were collected and processed on an Intel NUC mini-

computer, which also ran the MIPO algorithm and a nonlinear predictive

control locomotion controller.

Building upon the foundational work of Yang et al., 2023, this thesis ad-

vances the system design for state estimation in legged robots by refining the

proprioceptive odometry process. Enhancing the Multi-IMU Proprioceptive

Odometry (MIPO) system, this research integrates a novel array of proprio-

ceptive sensors, strategically augmenting the existing IMU and encoder setup

with advanced sensor fusion techniques. This augmented system employs

an innovative extended Kalman Filter (EKF) that incorporates dynamic foot

movement data and improves upon the integration strategy of multisensor

inputs.

Through experimentation and analysis, this enhanced MIPO system demon-

strates superior performance in state estimation accuracy and robustness com-

pared to its predecessors. The modifications detailed in this work not only

provide a higher fidelity in state estimation but also present a viable solution

for legged robots operating in GPS-denied environments.
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3.3 Neural Network Architecture

The core of the enhanced state estimation system is a 1D convolutional neural

network (CNN) designed to infer yaw angles from integrated sensor data

Hong et al., 2020. The CNN architecture is composed of the following layers:

• Input Layer: This layer accepts a time series of normalized sensor data

vectors, each vector encapsulating IMU and joint encoder readings.

• Convolutional Layers: Multiple convolutional layers with ReLU acti-

vation functions are used to extract and learn features from the input

data. The layers use kernels of varying sizes to capture both short and

long-term dependencies in the data.

• Pooling Layers: Max pooling layers follow convolutional layers to re-

duce dimensionality and computational complexity.

• Dropout Layers: Dropout is employed intermittently to prevent overfit-

ting by randomly dropping units during the training process.

• Fully Connected Layers: Dense layers follow the convolutional and

pooling layers to interpret the features extracted and to output the esti-

mated yaw angles.

The network outputs a series of values representing the yaw angle, which

is then integrated into the EKF. The CNN is trained using backpropagation

with a mean squared error loss function to minimize the difference between

the estimated and true yaw angles obtained from ground truth data. For a
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detailed description of the CNN architecture and training parameters, refer to

Section 4.2 and the Table 5.2 in Appendix.

3.4 Kalman Filter Implementation

3.4.1 Kalman Filter

The Kalman Filter operates with two main steps: Prediction and Update

(Welch, Bishop, et al., 1995).

Prediction:

xk+1|k = Axk|k + Buk + nk (3.1)

where A is the state transition matrix, xk|k is the estimated state from the

previous timestep, B is the control-input matrix applied to the control vector

uk, and nk represents the process noise.

Covariance Prediction:

Pk+1|k = APk|kAT + Q (3.2)

where Pk|k is the covariance of the estimate at time k and Q is the process noise

covariance matrix.

Update:

Kk = Pk+1|kHT(HPk+1|kHT + R)−1 (3.3)

xk+1|k+1 = xk+1|k + Kk(zk − Hxk+1|k) (3.4)
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Pk+1|k+1 = (I − KkH)Pk+1|k (3.5)

where Kk is the Kalman gain, zk is the measurement at time k, H is the

measurement matrix that maps the true state space into the observed space,

and R is the measurement noise covariance matrix. I represents the identity

matrix of appropriate size.

These equations establish a framework for predicting and correcting the

state of a dynamic system, utilizing a model of the system’s dynamics and

measurements. The Kalman Filter iteratively updates its estimates of the state

and error covariances to incorporate new measurements, thereby refining the

state estimates over time.

3.4.2 Extended Kalman Filter incorporating Multi-IMU

The Multi-IMU Proprioceptive Odometry (MIPO) method enhances the Ex-

tended Kalman Filter (EKF) by integrating data from multiple IMUs posi-

tioned near the robot’s feet, offering significant improvements over the simple

Kalman Filter (KF). Unlike the simple KF, which only handles linear dynam-

ics, the EKF adeptly manages non-linear system behaviors crucial for legged

robots’ varied joint movements and terrain interactions (Moore and Stouch,

2016). This multiple IMU approach not only refines the granularity and accu-

racy of state estimations but also increases the robustness of the EKF, enabling

more precise adaptations to complex environments and dynamic conditions.

In the Multi-IMU enhanced EKF, the state vector is defined as x = [p; v; θ; sj; ṡj],

where p is the robot’s position, v its linear velocity, θ the orientation angles,
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sj the foot position of leg j, and ṡjthe foot velocity. All the positions are rep-

resented in the world frame. The filter updates the state with a prediction

model using foot IMU data and a novel measurement model that leverages

foot IMU data for contact and slip detection.

The process model for the EKF is given by:

xk+1 = f(xk) + nk (3.6)

where f(·) is the prediction function and nk represents the process noise.

The EKF’s prediction step for state transition from time k to k + 1 is:

xk+1|k =

⎡⎢⎢⎢⎢⎢⎣
pk + ∆tvk

vk + ∆t(R(θk)ab − gw)
θk + ∆tΩ(θk)ωb

sk + ∆tṡ
ṡk + ∆t(R(θk)R

f
b (ϕ)a f − gw)

⎤⎥⎥⎥⎥⎥⎦ (3.7)

where ∆t is the time step, R(·) is the rotation matrix, ab and a f are the linear

acceleration measurements from the body and foot IMUs, ωb is the angular

velocity from the body IMU, gw is the gravitational acceleration, Ω(·) relates

the derivative of the Tait-Bryan angles to the angular velocity, and R f
b (·)

transforms the acceleration from the foot frame to the body frame.

The EKF measurement model is:

yk = h(xk, ϕ, ω f ) =

⎡⎣R(θk)
T(sk − pk)

R(θk)
T(vk − ṡk)

ṡk − ω × d

⎤⎦ (3.8)

where d is defined as −d0 · n
∥n∥ , with d0 being the distance between the foot

center and the foot surface, and n is the contact normal vector.
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For further details, refer to the work from Yang et al., 2023.

3.5 Analyzing Outputs

The state estimation process outcomes are assessed to gauge the neural net-

work model’s performance in contrast with conventional EKF methodologies

lacking CNN integration. Metrics such as the Root Mean Square Error (RMSE)

and maximum RSE (maxRSE) are computed to detail the precision of the

estimations. These metrics prove the effectiveness of the CNN-augmented ap-

proach under diverse operational conditions and its feasibility as a substitute

for traditional methods in practical scenarios.

Yaw predictions from the CNN are illustrated, and metrics such as the

IMU drift percentage, RMSE, and Mean Absolute Error (MAE) are derived

to evaluate performance. Furthermore, the state estimation process yields

calculated and plotted data regarding the robot’s orientation and position,

providing a comprehensive understanding of the robot’s navigational status.

The extensive evaluation, including statistical testing and visual comparisons

against multiple datasets, is critical in affirming the proposed method’s ro-

bustness for autonomous robotic navigation. For a full exposition of these

findings, refer to the Results chapter detailed later in this document.
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Chapter 4

Experimental setup

4.1 Experiments and Software Configuration

The experimental setup for this thesis utilizes a dataset collected from an

indoor environment to thoroughly evaluate the proposed state estimation

techniques. This dataset was derived from experiments conducted in a con-

trolled laboratory space equipped with a high-precision motion capture sys-

tem, providing accurate ground truth data for validation purposes.

On the software front, the convolutional neural network (CNN) is imple-

mented in Python 3.10, utilizing a 1D-ResNet architecture specifically tailored

for time-series analysis. This implementation, based on the ResNet model orig-

inally developed by He et al., 2015, has been adapted for time-series analysis

by Hong et al., 2020, who optimized it for performance with Python 3.7.5 and

PyTorch 1.2.0. The detailed model summaries are facilitated by torchsummary,

providing critical insights into the model architecture and performance. The

state estimation component is developed in MATLAB, leveraging the Casadi

library (version 3.5.5) designed by Andersson et al., 2019 to enable complex
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algorithmic calculations and optimizations. The Extended Kalman Filter (EKF)

used for state estimation, a key component of the system, was extensively

developed in the work by Yang et al., 2023. This comprehensive setup ensures

that the system’s performance can be accurately assessed across a wide range

of scenarios, reflecting its potential for practical deployment in autonomous

robotic navigation.

4.2 Dataset description

The dataset utilized in this study was derived from experiments conducted

using a Unitree Go 1 quadruped robot, as reported by Yang et al., 2023. This

robot featured a suite of sensors including a body-mounted MEMS Inertial

Measurement Unit (IMU), twelve motor encoders at the leg joints providing

real-time torque and angular data, and four foot pressure contact sensors for

detailed ground interaction feedback. Each foot of the robot was equipped

with an MPU9250 IMU, and an Arduino Teensy board managed the synchro-

nization and transmission of data from these IMUs to the central processing

unit.

Data collection occurred indoors in a controlled laboratory setting with a

high-precision motion capture (MoCap) system to ensure data fidelity and to

provide ground truth for algorithm validation. The robot operated at move-

ment speeds ranging from 0.4 to 1.0 m/s across flat terrain, employing trotting

or flying trotting gaits. Sensor data, comprising three-dimensional linear accel-

erations, angular velocities, torque, and angular measurements, were recorded

at a high frequency of 200 Hz. Orientation and position data were captured
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in quaternion and 3D coordinate forms, respectively, by the MoCap system.

All sensors’ data were initially resampled to unify the sampling frequency,

synchronized, normalized, and archived in rosbag file format, accessible on

the author’s GitHub page.

The dataset encompassed trials of approximately 45 seconds each on sim-

ple, flat terrain. Given the brief duration and the controlled environment,

IMU drift—common in mobile robotics—was minimal. However, to simu-

late deteriorative effects on sensor accuracy over longer periods and varied

terrains, Gaussian noise and cumulative Gaussian noise drift were synthet-

ically added to the IMU data. This artificial augmentation helped create a

robust framework for evaluating state estimation algorithms under realistic

conditions.

In this study, the MoCap system’s pose measurements provided a high-

fidelity ground truth. The Multi-IMU Proprioceptive Odometry (MIPO), using

multiple foot-mounted IMUs, served as the baseline for comparison with other

state estimation methods. The integration of body IMU data served as another

baseline, where angular velocity measurements were integrated over time

to estimate orientation; however, due to IMU drift, this method proved less

reliable.

The specifics of the number of trials and initial conditions were not ex-

tensively detailed in the source study by Yang et al. This omission limited

the depth of information available, which in turn may have influenced the

comprehensiveness of our findings. The lack of detailed trial data restricts

our understanding of the variability and reproducibility of the results, thus

26



posing a significant limitation on the generalizability and applicability of our

conclusions to other settings or conditions.

4.3 Neural Network Details

To address the limitations posed by dataset variability and enhance the

model’s generalizability across different robotic movements, we implement

two neural network-based methods using a 1D ResNet architecture (Hong et

al., 2020). Both approaches utilize approximately 3000 randomly selected data

points for training. The first neural network method is the Multi-IMU CNN

Angle Estimator (MI-CAE), which predicts yaw angles at two consecutive

time steps simultaneously, using mocap-derived orientation measurements

as ground truth, incorporating the differences between these predictions and

IMU integrations directly into the network as a regulatory mechanism. This

method is designed to mitigate the cumulative error introduced by IMU drift

by focusing on short time intervals between predictions. The second neural

network approach is the Multi-IMU CNN angle Correction Enhancer (MI-

CCE), which aims to predict a correction factor for the IMU-derived yaw

angles, with the ground truth being the discrepancy between the IMU in-

tegrations and mocap measurements. The corrected yaw angles are then

integrated into the MIPO framework to enhance state estimation further. The

efficacy of these methods is subsequently evaluated by comparing the re-

sulting position estimates against the mocap system data, thus ensuring a

robust assessment of each approach’s ability to improve upon traditional IMU

integration techniques in dynamic environments.
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We implemented a 1-dimensional Residual Network (ResNet1D) model

for the regression analysis of time-series data. The architecture is tailored to

process sequences by leveraging a convolutional neural network framework,

which is specifically designed to capture temporal dependencies and intricate

patterns in the data. The model’s input layer is configured to accept a number

of features per time step, matched to the dataset’s feature count, and utilizes

256 base filters in its convolutional layers. These layers utilize a kernel size of

5 and a stride of 2, optimizing the model to efficiently reduce data dimension-

ality while retaining critical information. The ResNet1D structure comprises

9 residual blocks, each containing a sequence of convolutional layers, batch

normalization, and ReLU activation functions. The output of the model is

configured to produce a single continuous value, which presents the predicted

yaw angles or the correction factor for IMU yaw angle measurements.

From a training perspective, the model employs the Adam optimizer

with an initial learning rate of 0.001 and a weight decay of 0.001 to prevent

overfitting. Additionally, a ReduceLROnPlateau learning rate scheduler is

integrated to adjust the learning rate based on the performance, specifically

reducing the rate if no improvement in loss is observed over 10 epochs. This

is complemented by the use of Mean Squared Error Loss (MSELoss) as the

loss function. The entire model is trained over 50 epochs.
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Chapter 5

Results and Discussion

In this chapter, the performance of two enhanced Multi-IMU Proprioceptive

Odometry (MIPO) models for state estimation in quadruped robots is analyzed

and compared with existing methods. Each model utilizes convolutional

neural networks (CNN) to enhance state estimation accuracy by integrating

proprioceptive sensor data from IMUs.

5.1 Comparative Performance Metrics

Table 5.1 presents the performance metrics for the various state estimation

methods tested. The Multi-IMU CNN Angle Estimator (MI-CAE) uses CNN-

predicted yaw angles derived from multiple IMU measurements for state

estimation, resulting in an average drift of 15.65%, a median drift of 15.87%,

an RMSE of 0.304946, and a maximum RSE of 0.855203. The Multi-IMU CNN

angle Correction Enhancer (MI-CCE) improves upon this by using a CNN to

predict an angle correction factor from multiple IMU measurements, which is

then used to correct the IMU data before performing state estimation. This
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method exhibits slightly lower drift percentages and error metrics, with an

average drift of 15.65%, a median drift of 15.87%, an RMSE of 0.304946, and a

maximum RSE of 0.855203.

The "mocap (MIPO)" method, the original approach presented by Yang

et al., 2023, employs angle information from a motion capture system and

shows the lowest drift and error metrics among the methods using IMUs, with

an average drift of 14.66%, a median drift of 14.87%, an RMSE of 0.286135,

and a maximum RSE of 0.788676. In contrast, the "IMU integration" method,

which calculates the angle directly from IMU measurements without any

correction or enhancement, performs the poorest, with the highest recorded

drift percentages and RMSE of 0.312954 and a maximum RSE of 0.981696.

Method median drift % RMSE max RSE use mocap
MI-CAE 15.87 0.304946 0.855203 No
MI-CCE 14.77 0.290946 0.757274 No
mocap (MIPO) 14.87 0.286135 0.788676 Yes
IMU integration 15.37 0.312954 0.981696 No

Table 5.1: Summary of results for various state estimation methods.

The performance results illustrate that all three specialized methods, MI-

CAE, MI-CCE, and MIPO, surpass the IMU integration approach in terms of

lower drift percentages and error metrics. Notably, while the MIPO method

uses angle information from a motion capture system and achieves the lowest

error metrics, the CNN-enhanced methods, MI-CAE and MI-CCE, exhibit

similar levels of accuracy without the reliance on external motion capture

systems.
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5.2 Visual Representations of Model Performance

In this section of the results chapter, a series of figures illustrate the perfor-

mance of the state estimation models under various conditions. These figures

are crucial for visually representing the efficacy of different CNN models and

sensor configurations in estimating orientation and position, as well as com-

paring their output against ground truth data. Figures are grouped according

to the model and sensor setup to provide a clear comparative analysis.

5.2.1 Orientation and Position Estimation Results

Figures illustrating orientation and position estimation results are presented

to compare the efficacy of multi-IMU setup across different models.
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Figure 5.1: Orientation results for Multi-IMU CNN Angle Estimator (MI-CAE)

5.2.2 CNN Prediction Outputs and Yaw Predictions

This subset of figures showcases the CNN prediction outputs and yaw predic-

tions, illustrating the precision of the CNN models in predicting yaw angles

against ground truth data.

These figures are integral for demonstrating the models’ accuracy and their

potential for practical deployment in autonomous robotic navigation without

reliance on external motion capture systems.
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Figure 5.2: Orientation results for Multi-IMU CNN angle Correction Enhancer (MI-
CCE)

Figure 5.3: Position results for Multi-IMU CNN Angle Estimator (MI-CAE)
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Figure 5.4: Position results for Multi-IMU CNN angle Correction Enhancer(MI-CCE)

Figure 5.5: Yaw prediction for Multi-IMU CNN Angle Estimator (MI-CAE)
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Figure 5.6: Yaw prediction for Multi-IMU CNN angle Correction Enhancer (MI-CCE)

Figure 5.7: Prediction output for Multi-IMU CNN angle Correction Enhancer (MI-
CCE)
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5.3 Assessment of Methodological Advantages and
Challenges

In this section, we delve into the implications of the experimental findings,

focusing on the advantages, potential improvements, and limitations of the

state estimation methods investigated.

The Enhanced MIPO models, which integrate convolutional neural net-

works (CNNs) for state estimation, have demonstrated comparable perfor-

mance to the traditional mocap-based MIPO in terms of error metrics. How-

ever, a critical advantage of the CNN-enhanced methods is their operational

independence from motion capture systems. This autonomy is particularly

beneficial in environments where deploying motion capture technology is

unfeasible—such as outdoor or uncontrolled environments—broadening the

potential applications of these methods. By eliminating the dependency on

external hardware, the Enhanced MIPO models enhance the robustness and

versatility of state estimation processes, making them more suitable for diverse

real-world applications in autonomous robotic navigation.

While the current CNN implementations provide significant benefits, there

is room for improvement in model performance through further optimization.

Enhanced results could potentially be achieved by fine-tuning the hyperpa-

rameters more extensively or by experimenting with different neural network

architectures such as ACNN1D, CNN1D, and CRNN1D. Each of these models

offers unique characteristics that could better capture the temporal dynamics

and dependencies in IMU data, potentially reducing estimation errors further

and increasing the accuracy of state predictions.
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The Extended Kalman Filter (EKF), used for integrating sensor data and

providing state estimates, also presents opportunities for enhancement. One

improvement could be the integration of adaptive filtering techniques, which

adjust the filter parameters in real time based on the observed estimation er-

rors. This adaptation helps the EKF to better handle the non-linear dynamics,

especially in varied terrains. Additionally, refining the process and measure-

ment noise models could significantly enhance estimation accuracy. This

involves recalibrating the noise covariance matrices to better reflect the true

sensor behaviors under different operational conditions. Another potential

enhancement is the refinement of the mathematical model used in the EKF.

This would include more sophisticated modeling of the dynamics involved,

particularly in how the robot interacts with its environment, to improve the

filter’s responsiveness to sensor discrepancies and to mitigate the impact of

model uncertainties on the state estimates. These adjustments would enable

more robust and accurate performance in real-world navigation tasks, catering

to the complexities of autonomous robotic movements.

By addressing these areas, the efficacy of the EKF could be significantly im-

proved, leading to more reliable and accurate state estimations under varying

operational conditions. This would further solidify the CNN-EKF framework

as a robust solution for state estimation in autonomous systems, paving the

way for broader adoption and implementation in more complex navigational

tasks.

Due to the limited scope of the project timeline, this study did not in-

clude data collection on varied terrains, which is a significant limitation.
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Recognizing this, the potential for extending the dataset to include diverse

environmental conditions should be a primary focus for future work. Expand-

ing the range of testing scenarios to incorporate different terrains and more

complex environmental conditions would not only test the robustness of the

state estimation models but also enhance their applicability and reliability

for real-world autonomous navigation tasks. This extension would provide

a more comprehensive understanding of the models’ performance across a

broader spectrum of operational contexts, thus contributing valuable insights

into their practical utility and limitations.
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Appendix

Model Architecture

The detailed architecture of the model is as follows:

Total parameters: 20,418,049

Trainable parameters: 20,418,049

Non-trainable parameters: 0

Input size (MB): 62.59

Forward/backward pass size (MB): 24,925.25

Params size (MB): 77.89

Estimated Total Size (MB): 25,065.73
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Table 5.2: Architecture of the ResNet1D Model

Layer (type) Output Shape Param #

Conv1d-1 [32, 256, 8691] 75,776
MyConv1dPadSame-2 [32, 256, 8691] 0
BatchNorm1d-3 [32, 256, 8691] 512
ReLU-4 [32, 256, 8691] 0
Conv1d-5 [32, 256, 8691] 327,936
MyConv1dPadSame-6 [32, 256, 8691] 0
BatchNorm1d-7 [32, 256, 8691] 512
ReLU-8 [32, 256, 8691] 0
Dropout-9 [32, 256, 8691] 0
Conv1d-10 [32, 256, 8691] 327,936
MyConv1dPadSame-11 [32, 256, 8691] 0
BasicBlock-12 [32, 256, 8691] 0
... ... ...
Conv1d-106 [32, 1024, 544] 5,243,904
MyConv1dPadSame-107 [32, 1024, 544] 0
BasicBlock-108 [32, 1024, 544] 0
BatchNorm1d-109 [32, 1024, 544] 2,048
ReLU-110 [32, 1024, 544] 0
Linear-111 [32, 1] 1,025
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