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Abstract

We see granular materials all around us in nature and industry in landslides, sand,

avalanches and in medical pills and food processing industries. Given their ubiq-

uity, their inelastic and critical state behaviour is of great interest. We compare an

experimentally generated shear band in a granular material (Ottawa sand) and a

discrete element simulation of a granular material under simple shear from the lens

of local rearrangements. Experiments utilizing sophisticated imaging capabilities in

geomechanics have enabled direct observation of strain localization mechanisms that

lead to the formation of shear bands during the deviatoric loading of granular ma-

terials. These experiments involve combining mechanical testing with modern X-ray

computed micro-tomography imaging and using robust DIC algorithms [1, 2]. These

grain scale experiments have helped directly observe and capture the mechanics of

the shear band from its inception until it is fully formed [3, 4]. However, local re-

arrangements within shear bands have not been quantified and extensively studied.

There have also been micromechanical studies of simple shear flow in granular ma-

terials to understand microscopic plastic deformations [5, 6, 7]. However, a direct

micromechanical and local rearrangement comparison of these two similar inelastic

deformations (a granular shear band and a granular material under simple shear),

has not been made. Local rearrangements in granular materials heavily influence
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their mechanical behaviour and are linked to the micromechanics. We perform a

local rearrangement analysis of a shear band in Ottawa sand under triaxial compres-

sion imaged in an experimental device developed at Johns Hopkins University [8].

We then perform the rearrangement analysis for a DEM simulation of a granular

material under simple shear, intended to be an equivalent representation of the Ot-

tawa sand shear band. We compare the local rearrangement characteristics of these

two deformations and evaluate whether local rearrangements in the simulated simple

shear deformation are representative of local rearrangements in the shear band. We

observe no striking similarity of the local rearrangement characteristics and on aver-

age, the shear band experiences greater local rearrangement. In both deformations,

we notice that regions rearranging the most contribute significantly to the macro-

scopic strain [6]. We also observe a significant local shear and local volumetric strain

coupling in both deformations.
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Chapter 1

Introduction

1.1 Granular materials

Granular materials are a class of amorphous materials that consist of a collection

of discrete particles with size no less than 1 µm. Sand, food grains, and medical

pills are some examples. Given their ubiquity in nature (sand, soil) as well as their

abundance in industry (medical pills in pharmaceutical transport or food grains such

as rice), their mechanical behaviour is of great interest. The mechanical behaviour of

granular materials is strongly dictated by the inter-particle interactions between the

constituent particles. These inter-particle interactions are usually non-linear in na-

ture. Thus, despite their abundance, the mechanical behaviour of granular materials

is complex and not as well understood as the behaviour of fluids. The mechanical

behaviour of granular materials is usually studied across three length scales. The first

and the smallest is the micro-scale, also called the grain scale where the inter-particle

interactions, forces and force chains are studied. The second is the meso-scale where

the behaviour of a collection of a few grains, such as their frictional behaviour is
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studied and several homogenization techniques are also used such as Eshelby the-

ory [11]. Shear transformation zone (STZ) theory [6] is one theory (among others

[12, 13]) used to link local rearrangements to the macroscopic behaviour. Finally, at

the macro-scale, continuum modeling techniques similar to those used for fluids and

solids are used. When a granular material is acted upon by any force in any direc-

tion of sufficient magnitude, some or all of the individual constituent particles are

displaced or rearrange locally. These micro-scale local rearrangements are very in-

fluential in effecting the macroscopic behaviour and are primal to understanding the

mechanics of granular materials. Since local rearrangements collectively contribute

to the macroscopic behaviour [6], different local rearrangement measures are defined

to help us understand and describe the mechanical behaviour of granular materi-

als. The plastic behaviour of materials and the onset of plasticity has always been

an area of great research interest given how it represents permanent deformation.

Granular materials are no exception in that respect. There have been several studies

experimental, theoretical and numerical [10, 1, 6] of plasticity in granular materials.

A shear band that develops in deviatorically loaded sand or any other granular ma-

terial is one case of a plastically deformed granular material. Experimental studies

attempting to capture the mechanics of this plastic shear band deformation have

evolved in their capabilities over the decades [1, 2, 14]. On the other hand, a gran-

ular material sheared by two parallel plates under plane shear flow at steady state

is also a case of plastic deformation of a granular material, because removal of shear

does not lead to the granular material reverting back to its initial fabric. Several mi-

cromechanical studies of granular materials under simple shear have also been made

[7, 15]. A shear band by its very nature is a region of intense shear strain. The stated

examples are of two (seemingly) similar deformations: first, a steady state granular

2



shear band nearing or at full development and second, a granular material under

simple shear that has achieved steady state. While the micromechanics for these two

deformations have been extensively studied separately, a direct comparison of the

micromechanics of these two deformations has not yet been made.

1.2 Shear bands

A shear band is a narrow, local region of high shear strain that develops in a material

when it is subjected to deviatoric loading. Although shear bands are not usually

observed in brittle materials like glass at room temperature, they are observed in

a broad range of other materials such as metals, ceramics, polymers and granular

materials. Because the formation of shear bands precedes or coincides with failure in

a material, and continued deformation of a shear band occurs at a material’s critical

state, understanding the mechanics inside a shear band is key to understanding

failure in materials. Consequently, shear bands are also of great interest. Just

as shear bands have been studied in metals and ceramics [16], shear bands and

their formation in granular materials have also been studied. Figure 1.1 shows an

illustration of localized deformation and shear band formation in a metallic glass [7].

The deformation of the metallic glass and the subsequent shear band formation is

simulated using a finite element implementation in ABAQUS.
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Figure 1.1: Illustration of localized deformation and shear band formation in a metal-
lic glass under compressive loading [7]. The metallic glass sample being continu-
ously and deviatorically loaded is simulated using a finite element implementation
in ABAQUS and a map of the plastic strain field as indicated by the greyscale bar
is shown. (Figure from [7]).

1.2.1 Shear bands in granular materials

The study of shear banding in granular materials such as sand has been an active

area of research in geomechanics for decades. We briefly describe some influential

studies conducted to capture the formation of shear bands in sand and study their

mechanics. Experiments have been performed on sand in Grenoble, France for over

three decades to measure deformations and characterize strain fields before, during

and after the formation of the shear band. These experiments have been summarized

by Jacques Desrues and Gioacchino Viggiani in their 2004 study [14]. In these ex-

periments, a careful and systematic analysis of photographs taken of the deforming

sand specimen allowed measuring deformations to predict patterns of strain local-

ization. Stereophotogrammetry-based techniques [14] were used to photographically

observe strain localization. In the 1980s, X-ray tomography was first used by Jacques
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Desrues and coworkers to observe deformation and measure strain fields in shear

banding sand. X-ray tomography would prove to be a very influential technique that

could be used to capture grain-scale characteristics as we will describe in some of the

experimental studies conducted recently.

Building on the efforts and studies conducted until 2004 to capture shear bands

[14], a study conducted in 2010 [2] was the first to combine X-ray micro computed

tomography (µCT) with volumetric digital image correlation (DIC) to observe and

quantify the onset and evolution of a shear band in sand with grain-scale resolution.

X-ray µCT and digital image correlation (DIC) were used separately in the past to

study shear banding, but this was the first time they were combined to obtain the

evolving displacement and strain fields at the grain-scale in deforming sand. Prior

to this, micromechanical studies were confined either to 2D or artificial granular

materials such as glass beads. This 2010 study [2] which was conducted for triaxially

compressed sand (Hostun sand), has allowed the development of a localized shear

band to be characterised. The curve in Figure 1.2 shows the Hostun sand sample’s

stress-strain response. We see the evolution of the deviatoric stress with axial strain

when Hostun sand is triaxially compressed under a confining pressure of 100 KPa.

We see the response for the different increments 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 of the

axial strain. Incremental analysis has shown that strain localization begins before the

peak stress and a diffuse wide shear band progressively becomes thinner, evolving

to a shear band that is 17dp wide (dp being the average particle diameter). The

incremental maps of the kinematics of the grains, like the ones shown in Figure 1.3,

suggest that localization is initiated in increment 4-5 and is fully developed in 5-6. It

also appeared that the shear band contained a narrow internal core of much higher

strain. This study introduced the technique of using volumetric DIC in conjunction
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with X-ray µCT to capture grain scale kinematics in deforming natural granular

materials like sand. Individual grains could be seen and uniquely identified in 3D.

The characterised grain rotation is also shown in Figure 1.3. The individual grain

rotations become progressively more intense into a zone that roughly corresponds to

a fully developed shear band.

Figure 1.2: Deviatoric stress (kPa) vs axial strain for the deviatoric loading part of
the triaxial compression test (for entire Hostun sand sample). We see a linear trend,
followed by a curvature leading up to a peak stress at about 11 % strain followed
by a plateau at which point the triaxal test was stopped. The shear band is fully
developed in increment 5-6 [2]. (Figure from [2]).

Following the precedent set by studies like the previously described 2010 study [2],

many studies were conducted using X-ray µCT imaging to observe and characterise

grain scale kinematics [1, 4].

A recent development in geomechanics has been the increasing focus on small

scale mechanisms contributing to the macroscopic behaviour [17]. In sand, for ex-

ample, recent in-situ experiments combined with imaging capabilities of modern

X-ray computed micro tomography instruments reveal small scale phenomena such

as shear strain localisation. It was observed that these strain localizations occur in
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Figure 1.3: Discrete volumetric-DIC derived incremental grain rotations (magnitude)
for steps 3-4, 4-5, 5-6 and 6-7 of triaxial compression of Hostun sand under 100 KPa
confining pressure [2]. We see that the grain rotations intensify into a zone that
roughly corresponds to the shear band. (Figure from [2]).

length scales that are as long as tens of grains. This further underscores the need

for increased focus in grain scale micromechanics of granular materials. What has

made possible the direct observation of the mechanics of deformation on these small

scales is the use of X-ray computed micro tomography imaging techniques [2] and

efficient particle tracking or digital image correlation algorithms. A study conducted

in 2012 [1] introduced a particle tracking approach to better capture the grain scale

kinematics of deforming sand. This particle-tracking approach was tested on two dif-

ferent experiments. The first was triaxial compression of Hostun sand and the other

was triaxial compression of rounded Caicos Ooids. Figure 1.4 shows the evolution of

deviatoric stress with axial strain in these two experiments conducted at Grenoble,

France [1, 14]. The macroscopic deviatoric stress vs axial strain response curve tells

us that steady state is essentially achieved after the peak deviatoric stress, and the

shear band is fully developed. After this, the curve plateaus.
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Figure 1.4: Peak deviatoric stress ratio vs axial strain for two different sands (top).
Illustration of shear band mechanics from incremental grain displacements and ro-
tation obtained after X-ray µCT and DIC (bottom) of shear banding Caicos Ooids
[1].We see the grain scale displacements and rotations for steps 1-2, 2-3, 3-4, 4-5, 5-6.
Peak deviatoric stress occurs at 3-4 when the shear band is fully formed. (Figure
from [1]).

The bottom section of Figure 1.4 clearly demonstrates localized deformation and

shear band formation in triaxially compressed Caoicos Ooids [1]. We see again in

Figure 1.4, that the deviatoric stress vs axial strain response is similar to the one in

the 2010 study [2] (Figure 1.2) described earlier. The shear band starts to develop

before peak deviatoric stress and is wide and progressively becomes thinner and fully

developed at and after peak deviatoric stress, following which the curve plateaus.

Another observation was that the width of the fully developed shear band and the
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strain at the peak deviatoric stress is different for Hostun sand and Ciacos Ooids.

For example, in this 2012 study, the width of the shear band in deforming Caicos

Ooids sand was found to be about 7dp, where dp is the average particle diameter

(the width of the shear band can also be measured using DIC). However, in the 2010

study described previously, the width of the shear band in Hostun sand was found

to be about 17dp. This difference was attributed to the differences in the grain size

and morphology, although further exploration is needed [1].

Another recent experimental study of shear bands conducted in 2015 [4] involved

several triaxial compression tests on sands at different confining pressures. Triaxial

tests were performed on Ottawa sand and Hostun sand at different pressures up to

7000 KPa. In these studies, grain breakage was also captured and analysed. The

deviatoric stress and volumetric strain vs axial strain curves at different confining

pressures obtained from the triaxial compression study [4] are shown in Figure 1.5.

We see a progressive reduction in the peak deviatoric stress to mean stress ratio

(or q/p ratio) as well as an increase in the peak deviatoric stress value with increas-

ing confinement pressures. The difference between the peak deviatoric stress and the

plateau is large at low confining pressures, which also reduces with increasing pres-

sure, as does the normalized q/p ratio. The considerable dilation that Ottawa sand

undergoes at lower pressures also progressively reduces with increasing pressure.

All three studies described above underscore the recurring characteristics of the

mechanical response of shear banding sand, one which involves the onset of develop-

ment of the shear band before peak deviatoric stress, followed by a plateau, at which

point the shear band is fully developed. As the peak deviatoric stress is approached,

the width of the shear band also reduces until the shear band is fully developed, after

which the width of the shear band is constant. These recent strides in experimental

9



Figure 1.5: Deviatoric stress normalised by mean stress vs axial shortening and
volumetric strain vs axial shortening for triaxial compression tests on Ottawa sand
[4]. (Figure from [4]).

techniques involving X-ray computed tomography imaging capabilities and efficient

DIC with particle tracking algorithms have significantly helped reveal the mechanics

of shear bands at high spatial resolutions. These deformation measurements yield the

particle centroid positions, the particle radii and the particle displacements. These

quantities are sufficient for calculating the strains and quantifying the local rear-

rangements (which we will describe in detail in Chapter 4). Using these deformation

measurements of a shear band to conduct a local rearrangement analysis has not

been done before.

We have described some recent experimental studies of shear bands. On the other

hand, in the granular flow community, many studies of granular materials under

simple shear are conducted [18, 19, 20] to study their critical state behaviour and

10



transition. Here we study a case of an inelastic deformation in granular materials

that is similar to an almost-fully-formed steady state granular shear band. Shear

bands alone have been studied extensively and several studies describing granular

materials under simple shear have also been studied. However, a connection between

these two plastic deformations has not been made, which we attempt to make in this

thesis.

With the computational capabilities of modern computers, and with easy access

to a plethora of softwares, performing a simulation of a granular material under any

condition is no longer a tedious task. While granular materials are still relatively

poorly understood, several models have been proposed in the past two decades to un-

derstand their flow [20]. The shear flow of granular materials across flow regimes has

been a particular focus of many of the models proposed. The portion of the granular

material in a shear band is under a state of intense shear strain. Hence, we believe

it is worthwhile exploring whether the knowledge we have about granular materials

under simple shear can give us any insight into a granular shear band. We look for

any similarities between a granular shear band and a granular material under simple

shear and we do so using the lens of local rearrangements. We compare the local

rearrangements and also quantify the contributions of these local rearrangements to

the macroscopic strains that the granular samples experience [6].

1.3 Overview of thesis

As described in the last few paragraphs of the previous section, our motivation is

to make a direct comparison of the micromechanics and local rearrangements of two

similar deformations: first, a fully formed, experimentally generated shear band in
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Ottawa sand; second, a simulation of a granular material under going simple shear.

We extract two equivalent strain snapshots of these two deformations. The first is

of shear banding Ottawa sand between two load steps. The other is of the simple

shear simulation between two timesteps with strain that matches that of the shear

band. We compare the local rearrangements of these two strain snapshots.

In Chapter 2, we briefly describe the triaxial compression experiment performed

on Ottawa sand. This experiment was performed using an apparatus named HP-

TACO [8], designed and built at Johns Hopkins University. Members of the Hurley

research group performed the experiment at a high confining pressure of 10 MPa,

which has not been done previously. We primarily discuss the outputs of the experi-

ment relevant to our efforts to study the local rearrangements in the sample and the

shear band. In Chapter 3, we discuss a simple shear DEM simulation we performed

to compare with the experimental output obtained in Chapter 2. In Chapter 4, we

discuss the methodology followed to calculate the strains and quantify the differ-

ent local rearrangement measures for both the experiment and the equivalent DEM

simulation. In Chapter 5, we present our results and compare the local rearrange-

ments, their cross correlations and contributions to macroscopic shear strain for the

experiment and the equivalent DEM simulation. Finally, in Chapter 6 we discuss

our conclusions from the results we have obtained and we briefly describe what work

we wish to explore in the future.
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Chapter 2

Shear band generation during
triaxial compression of Ottawa
sand

An experimental triaxial compression device called a High Pressure TriAxial

COmpression instrument, which we refer to by its acronym (HP-TACO) was de-

veloped at Johns Hopkins University [8]. This device is used to compress a sample

of Ottawa sand using an actuator and a load cell while it is confined by a membrane.

The membrane is surrounded by water maintained at a confining pressure of 10 MPa

using a pump. A schematic of the setup is shown in Figure 2.1(a). The actuator

allows us to impose an axial strain. The load cell facilitates measurement of the

stress response.

The sample is compressed and eventually a shear band is formed and we wait

until steady state is achieved and the shear band is fully developed to perform our

analysis. Micro computed tomography (µCT) techniques that we referred to when

describing previous shear band experiments are used to obtain the scans of the sample

at different load steps illustrated in Figure 2.1 (b),(c),(d). In-situ X-ray tomography

was performed for every 2% of axial shortening, followed by continuum and discrete
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digital image correlation (DIC).
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Figure 2.1: (a) HP-TACO components. (b) Deviatoric stress v/s strain at steady
state. (c) Sample DIC. (d) Discernible shear band from deviatoric strain.

For each tomography image, segmentation and particle-tracking is performed

in SPAM [21]. The output of segmentation and the discrete and continuum DIC

is then used to obtain the particle sizes, the particle centroid positions and their

displacements, which are needed to quantify the local rearrangements (description of

which will come in Chapter 4). The Ottawa sand sample is polydisperse and consists
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of around 32,000 grains. In Figure 2.1(b), between load steps 4 and 5, we have

the positions, displacements and deformation gradients of each particle which we

use to quantify the local rearrangements. As described in the studies [2] mentioned

in Chapter 1, Section 1.2.1, at the peak deviatoric stress, which is what steps 4-5

correspond to, the shear band is essentially fully formed. We assume no breakage

takes place and the particle size cumulative distribution is shown in Figure 2.2.

Figure 2.2: Cumulative distribution of particle sizes in the entire Ottawa sand sam-
ple.

Figures 2.1 (b) and (d), show the deviatoric stress vs strain between steps 4 and

5 (when steady state is achieved). We clearly see a discernible shear band is formed.

Discrete and continuum DIC analysis performed also helped measure the size of the

shear band (width), which is 10dp where dp is the average particle diameter. We
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see that the deviatoric stress vs axial strain plot in Figure 2.1 (b) is similar to the

ones obtained in previous triaxial sand compression experiments [4] [1] (Figures 1.2,

1.4 and 1.5). The triaxial compression experiments performed on Ottawa sand at

different confining pressures were mentioned in Chapter 1, Section 1.2.1 [4]. We also

noted that with increasing pressure, the deviatoric peak stress progressively gets

closer to the plateau. A clear deviatoric stress peak starts to fade away at higher

pressures. The highest confining pressure in the experiments conducted in the 2015

study [4] described in Chapter 1, Section 1.2.1 was 7 MPa. However, in the current

HP-TACO experimental set-up, we impose a confining pressure of 10 MPa. We

therefore do not see a perfectly discernible stress peak and the shear band at steps

4-5 in Figure 2.1(b) is essentially fully formed and at steady state. As mentioned

previously, the HP-TACO instrument can handle much higher confining pressures

than were imposed in the 2015 study [4]. Figure 2.3 shows the deviatoric stress

vs axial shortening (both normalised) at different high pressures for deviatorically

loaded Ottawa sand. The top right section of Figure 2.3 also shows the deformed

granular sample. The Ottawa sand sample occupies a cylindrical sample volume

(Figure 2.3) and is compressed from the top while being confined by a membrane

that exerts a pressure of 10 MPa from the water surrounding it. The water flows to

surround the membrane through a pump.

We extract a shear band after we plot a heat map of the vertical local strain com-

ponent ϵzz and the local shear γmax for all the grains (we describe how we calculate

ϵzz and γmax in Chapter 4) as illustrated in Figure 2.4. After we calculate ϵzz and

γmax for all the grains and plot a heat map, we see a clearly discernible shear band

in Figure 2.4. To extract the shear band section, we first view the shear band along

the y-axis since the shear band is predominantly in the xz plane. Then, we subjec-
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Figure 2.3: Deviatoric stress vs axial shortening in deviatorically loaded Ottawa sand
at different confining pressures.

tively select two points that lie on a straight line that passes through the bottom of

the shear band referred to in Figure 2.5. The slope of this xz plane line gives the

angle of the shear band. Using this angle we rotate our coordinate system about the

y-axis by the shear band angle. Once our coordinate system is rotated and we have

the equation of the line defining the bottom of the shear band, we make use of the

observation that the height of the shear band is approximately 10dp and we obtain

the equation of the straight line that represents the top of the shear band (since it

is 10dp away from the bottom line of the shear band). Both the top and bottom

lines are depicted in Figures 2.5 and 2.6. Setting these two lines as the limits we can

identify all the particles that lie between these two lines as those that lie inside the

shear band. This shear band consists of around 8,500 particles by this method.

In this chapter, we have described the experiment performed to generate a shear
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Figure 2.4: Discernible shear band from heat map plot of (a) γmax and (b) ϵzz.
(calculation of γmax and ϵzz will be described in Chapter 4).

band in triaxially compressed Ottawa sand followed by a brief description of how

the particle centroids and particle radii of the grains in the sample are obtained. We

also illustrated how we extract the shear band in the sample which is our primary

interest here. This is the first of the two deformations we wish to compare. In

the next chapter, we describe the second deformation which is a simulation of a

granular sample under simple shear. In Chapter 4, we discuss how we quantify

the local rearrangements in any granular assembly and we apply the quantification

methodology to both the shear band and the sample under simple shear to obtain

the local rearrangements of these two deformations. In Chapter 5, we compare the

local rearrangement characteristics of these two deformations.
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Figure 2.5: Once the shear band is clearly discernible in the xz plane, we connect
two points on the bottom of the shear band. The top line is 10dp away from the
bottom line and parallel to it in the rotated coordinate system.

Figure 2.6: Once the shear band is clearly discernible in the xz plane and we know the
equations of the two lines that represent the top and the bottom of the shear band,
we can set the two lines as the limits and identify all the particles that lie between
these two limits. On the top right is the xz view of the shear band. The bottom
right section shows the 3D view of the angled cuboidal region that approximately
constitutes the shear band. The width of the shear band as described is 10 dp (dp
being the average particle diameter).
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Chapter 3

Simple shear DEM simulation

To compare with the shear band produced from the experiment described in the

previous chapter, we perform a Discrete Element Method (DEM) simulation of a

granular material under simple shear. In a Discrete Element Method (DEM) simu-

lation, based on the loading conditions, boundary conditions, inter-particle contact

model and other mechanical properties such as the coefficient of friction and the

coefficient of restitution, the equations of motion for each discrete particle are solved

at each time instant. While this can not be done by hand, modern computers can

perform these tedious calculations. We can output several per-particle properties at

different times, such as the displacements, velocities, orientations, stresses, etc. We

use LIGGGHTS (LAMMPS improved for general granular and granular heat transfer

simulations) [22] to run the DEM simulation. We use a Hertzian contact model in

our simulation and the grains are modelled as spheres. The shearing is performed by

two parallel walls (both parallel to z = 0) and the granular sample being sheared is

confined between these two walls. The particles of the granular sample are inserted

in the height between these two parallel walls, in the simulation box. The walls move
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in opposite directions (top wall in the negative x and bottom wall in the positive x

direction ) to shear the granular sample confined in between (see Figure 3.1). The

other four walls that confine the granular sample are periodic in the x and y direc-

tions. We specify the dimensions for a simulation box and we also specify the density

and size distribution of the particles. Based on the simulation box dimensions and

the size distribution, a certain number of particles are inserted in the simulation box

region. The dimensions of the simulation are the same as the shear band with the

height as 10dp which is the distance between the two parallel shearing walls (shown

in Figure 3.1) when they are moving. The length of the two parallel walls is 12dp

and the width is 10dp (dp is the average particle diameter). While keeping the di-

mensions of the simulation box the same as that of the shear band to ensure that

our simulation is the same size as the shear band, we vary the particle size distribu-

tion so that the number of particles in the simulation is the same as the number of

particles in the shear band. The sample now contains 8,900 particles. After these

8.900 particles have all been inserted and settled, the two parallel walls shear this

granular sample as mentioned. The walls are made up of particles that are about the

same size as the particles in the granular sample. These particles that constitute the

wall have positions that are rigidly fixed relative to other particles in the wall (see

Figure 3.1). We construct the wall this way to ensure that when these rough walls

move and shear the granular sample, the wall particles interlock with and contact

the particles in the sample sufficiently to ensure that the sample is being sheared

sufficiently. The bottom wall is just above the z = 0 plane and parallel to it. The top

wall is initially at a height of 20dp and parallel to the bottom wall. In LIGGGHTS,

particles are inserted until a specified target (specified by the user in the input file

for the simulation) is reached. This target can be a regional solid volume fraction,
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the total number of particles in the region, or the total particle mass in the region.

In our simulation, we define the target as a regional solid volume fraction of 0.7.

Figure 3.1: On the left are the two parallel walls that shear the granular sample.
The granular sample’s particles are inserted in the space between the two walls. The
height between the two walls is 10dp, which is the same as the width of the shear
band. The top wall moves in the negative x direction and the bottom wall moves in
the positive x direction. On the right is a rendering of the granular sample under
simple shear with the colorbar on the extreme right depicting the particle radii.

We impose a periodic boundary condition in the x and y directions mentioned

previously. When we start the DEM simulation, for the first few time steps, the top

wall descends until it comes into contact with the granular sample that has been

inserted and compresses this sample for a few timesteps. Then, these two walls start

to move in opposite directions and shear the sample. Studies [18] have shown that

the parameters in the DEM simulation intended to capture quasistatic deformation

must be chosen such that the dimensionless parameter known as the inertial number

I lies within a quasistatic flow regime. This inertial number I is calculated as:

I = γ̇

√
m

P
, (3.1)
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where γ̇ = 2vx
h

is the shear rate (vx is the wall velocity which is equal and opposite

for two parallel walls), h is the height between the walls, m is the average mass

of particles, P is the confining pressure, 10 MPa. This dimensionless number can

be described as a ratio of the inertial forces to pressure forces. High values of I

correspond to the fully collisional regime of kinetic theory. Low values of I correspond

to the quasistatic critical state for soil mechanics which is of interest here.

To ensure that the shear flow is within the quasistatic critical state regime, studies

[18] have illustrated that this dimensionless inertial number I must be below 10−4.

The wall velocity is chosen such that, given the particle size distribution, the inertial

number I is within this regime. As mentioned before, the length of the two parallel

walls is 12dp and the width is 10dp. We impose a confining pressure of 10 MPa in

the DEM simulation through the wall by making the wall impart a force that is

F = (Pressure) × (Area), where the pressure is the confining pressure of 10 MPa

(same as the confining pressure in the experiment); area is the area of the wall which

is the length× width.

Parameter Value
Coefficient of friction µ 0.8
Velocity of top wall -0.008 m/s

Velocity of bottom wall 0.008 m/s
Coefficient of restitution 0.7

Particle density ρ 2500 Kgm−3

Time step 2x10−8 seconds

Table 3.1: DEM simulation parameters

We run the simulation until steady state is achieved. We dump output files after

every 20,000 time steps where one single timestep is 2×10−8 seconds. The output file

at each of these timesteps provides the positions of each particle, the particle stresses,
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Particle radius in µm Number Share in %
70 µm 25 %
72.5 µm 25 %
78 µm 25 %
97 µm 25 %

Table 3.2: Particle size distribution for DEM

the orientations, velocities and several other kinematic quantities. We observe that

it requires around 10 million time steps for steady state to be achieved. The steady

state velocity profile is shown in Figure 3.2. We select two points in time such that

the macroscopic shear associated with the time difference of these two time steps is

the same as the macroscopic shear strain of the shear band. This timestep difference

can be calculated from:

2× (Wall − V elocity)× (∆t)× (timestep)

h
= ∆ϵSBxz (3.2)

where h is the height which is 10 × dp and dp is the average particle diameter.

∆ϵSBxz is the macroscopic shear strain that the entire shear band experiences between

the two load steps for which we analyse experimental data (load steps 4 and 5).

Also, in the local rearrangement analysis for this simple shear DEM simulation, we

only consider a central flow region away from the x and y periodic boundaries to

ensure the particles for which we calculate the local rearrangements do not cross the

periodic boundary. Figure 3.3 shows the macroscopic response of the DEM simple

shear simulation. The shear stress and the vertical stress achieve steady state with

strain. The steady state shear stress is around -1.75 MPa.

In the previous chapter (Chapter 2) we described how we obtain the particle

centroid positions and the particle radii of the grains in an experimentally gener-

24



ated shear band. In the current chapter, we have described how we obtain the per

particle kinematics which includes the particle centroid positions and particle radii

of a simulated granular sample under simple shear. In the next chapter (Chapter

4), we describe how we use these centroid positions and particle radii to calculate

the strains and quantify the local rearrangements in both the shear band and the

simulated granular sample under simple shear.

Figure 3.2: Steady state velocity profile of the granular sample under simple shear.
We obtain the velocities of the particles from the output of the DEM simulation.
We divide the the entire sample into several stratified layers in the z-direction. We
plot the average of the x-velocity components of all the particles for each layer (each
layer has a specific height z) to obtain the velocity profile.
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Figure 3.3: Macroscopic stress-strain response of the granular sample under simple
shear. We also highlight the strain snapshot chosen such that the strain associated
with this snapshot is the same as that of the shear band. (a) Macroscopic shear
stress response (b) Macroscopic vertical stress response
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Chapter 4

Methodology for quantifying local

rearrangements

4.1 Strain calculation

In order to quantify the local rearrangements, we first need to calculate different

strain measures for the entire granular assembly (whether for the experimental shear

band or the simulation). To calculate the strains, we need the particle centroid posi-

tions and the particle radii at both the load steps (for the experimentally generated

shear band) and both the timesteps (for the DEM simulation). The source of these

particle centroid positions changes depending on whether it is for the shear band

(DIC from micro CT data) or the simple shear DEM simulation (particle centroid

positions are the output of the simulation at different times) [23]. After we have

the particle centroid positions between the two times, the procedure to calculate

the strains is the same which we describe next. We use Bagi’s method to calcu-

late strains in granular assemblies as described in [24]. To calculate the strains, we

27



first construct a radical Voronoi tessellation in Voro++ [25, 26] at both the times

(and load steps) using the particle centroids and the particle radii, we subsequently

construct the Delaunay triangulation, the dual network to the Voronoi tessellation.

This Delaunay triangulation is similar to a mesh in finite element method problems

consisting of several tetrahedrons (in 3D) or triangles (in 2D). The particle centroids

serve as the nodes for these tetrahedrons. One caveat we wish to mention is that

for the Voronoi tessellation of the Ottawa sand sample (experiment), we assume the

entire sample is monodisperse with all particles having the same diameter of dp (av-

erage particle diameter of the entire sample). We do this because the polydispersity

of the Ottawa sand sample is such that some very small-sized particles are in close

contact with particles that are much larger. Because of this and our chosen method

of constructing tessellations using Voro++, when a tessellation is constructed, the

Voronoi cell associated with the large particle pushes the small particle centroid out-

side of its own Voronoi cell, leading to the smaller Voronoi cells getting destroyed and

fewer Voronoi cells than particles in the sample. Hence, we assume monodispersity

to avoid this problem. Figure 4.1 shows the Delaunay triangulation generation for

the first load step of the two analyzed from the experiment and Figure 4.2 for the

first of the two timesteps from the DEM simulation. We use this initial triangulation

for our strain calculations. The displacement gradient for each tetrahedron t in the

Delaunay triangulation, ut
i,j, was then calculated using:

ut
i,j =

1

Vt

4∑
k=1

uk
i a

k
j . (4.1)

Vt is the volume of each tetrahedron, k is the particle centroid forming the tetrahe-

dron, uk
i is the displacement of particle i at node k between load steps or timesteps,
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Figure 4.1: Delaunay triangulation from particle centroids. On the left we have the
particle centroids of all the particles in the sample. Using the Voronoi tessellation
we form the triangulation or the mesh on the right.

akj is a vector with magnitude equal to the area of the tetrahedron face not contain-

ing the node k divided by space dimension (3 in 3D and 2 in 2D) pointing towards

interior of tetrahedron and perpendicular to tetrahedron face not containing node k

[24]. The infinitesimal strain and rotation tensors for each tetrahedron are calculated

in (4.2), and (4.3) as:

ϵtij =
1

2
(ut

i,j + ut
j,i), (4.2)

ωt
ij =

1

2
(ut

i,j − ut
j,i). (4.3)

Next, we calculate the particle centered strain for each particle using the tetra-

hedral strains by:

ϵcij =
1

Vc

Nc
t∑

t=1

ϵtijVt, (4.4)
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Figure 4.2: Delaunay triangulation of simple shear DEM simulation sample between
two timesteps that produce the same strain as found in the shear band.

where t is the index of a tetrahedron for which a particle serves as a node, N c
t is the

number of tetrahedrons in the Delaunay triangulation for which the particle c serves

as a node, Vt is the volume of tetrahedron t, ϵtij is the strain tensor of tetrahedron t,

and Vc =
∑Nc

t
t=1 Vt is the sum of the volumes of all the tetrahedrons for which contact

particle c serves as a node. This is repeated for each particle in the granular sample

and all the tetrahedrons in the Delaunay triangulation. With these particle centered

strains, we can now compute local rearrangement measures.

4.2 Quantifying local rearrangements

Before defining and computing the local rearrangement measures, we first define a

local averaging region applicable to each particle in which these local rearrangement

definitions are valid. We define the local averaging region as a spherical region

centered on the center of mass of the particle, of radius Nrp, where N is an integer

and rp is the mean particle radius of all the particles in the sample. Studies conducted

on local rearrangements in metallic glasses (original STZ theory paper) [6], colloidal
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Figure 4.3: Local averaging region centered around central gray particle with its
neighbours (in yellow) inside [9]. (Figure from [9]).

glasses [27] and granular materials [28] suggest that local isolated, separate and

exclusive rearrangement events can be identified withD2
min (a rearrangement measure

which we will describe in the next few paragraphs) when the local averaging region is

between r = 2rp and r = 3rp. We therefore choose r = 3rp for the analysis here. We

also observed that changing r between r = 2rp and r = 3rp does not qualitatively

change our results significantly. Using this definition of the averaging region, we

define the local strain in the averaging region corresponding to each particle by:

ϵlij =
1

Vl

Ne
p∑

c=1

ϵcijVc, (4.5)

where c is the index of a particle partially or fully within the local averaging region. Vc

is the volume of the particle within that region, N c
p is the number of particles partially

or fully inside the region, Vc is calculated using the sphere-sphere intersection formula

[29].

We can now quantify the local rearrangement measures. We compute five met-

rics of local rearrangement. These metrics or measures are inspired by previous

studies examining local rearrangements in metallic glasses and granular materials

in the context of shear transformation zone (STZ) theory [6, 7, 30]. Three of these
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local rearrangement measures, local shear (γmax), dilation (ϵ+), and contraction (ϵ−),

are based entirely on local strains defined in equation (4.5). These local measures

are very important in the context of STZ theory [6, 7, 30] which assumes that the

macroscopic strain is influenced almost entirely by local, isolated strain events with

certain principal directions and magnitudes. One of the remaining two measures of

local rearrangement quantifies non-affine particle deformation and is the well know

D2
min which was also first described in the original 1998 paper that proposed STZ

theory [6]. The final measure is the relative particle rotation θrel which quantifies the

relative rotation of a particle with respect to its neighbours in the local averaging

region and the rigid body rotation of the entire granular sample as a whole. We de-

fine θrel to capture relative particle rotations known to be a signature of plasticity in

cyclically sheared granular materials which may not be captured by the local strains

or D2
min [31, 30].

From the local strains we defined in equation (4.5), we can define the local shear,

dilation and contraction in the local averaging regions as:

γmax =
ϵl1 − ϵl3

2
, (4.6)

ϵvol = ϵl1 + ϵl2 + ϵl3, (4.7)

where ϵl1 , ϵl2 , ϵl3 are the principal strains in the local averaging region obtained

from an eigen-value decomposition of ϵl. A local region either exhibits local dilation

(ϵvol > 0) in which case it is labelled ϵ+, or it exhibits local contraction (ϵvol < 0) in

which case it is labelled ϵ−.

To compute D2
min for particle i between timesteps or load step s and s + 1, we
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perform the calculation in (4.8)

D2
i,min = min

1

N e
p

Ne
p∑

j=1

(∆dijk (s+ 1)− ϵkld
ij
l (s)), (4.8)

where, dijk (s) = rj(s) − ri(s) is the relative position of particles i and j at time or

load step s, ∆dijk (s+1) = dijk (s+1)− dijk (s), ϵkl is the minimizing strain tensor, and

N j
p is the number of particles j around the central particle i in the local averaging

region. Minimization is performed over ϵkl.

To calculate the relative particle rotation we first calculate the local rigid body

rotation from the infinitesimal rotation for all the tetrahedrons calculated in equation

(4.3) as:

ωV e
ij =

1

Vc

Nc
t∑

t=1

ωt
i,jVt. (4.9)

We use ωV e
ij to calculate Rcell(i) as Rcell(i) = ωV e

ij + I, where I is the 3D identity

matrix. Rcell(i)−1Rxrd(i) is the rigid body rotational component from Rxrd(i) leaving

only the rotation of a particle in a local frame that rotates rigidly with the material.

Finally the rotation matrix describing the relative rotation of particle i relative to

its neighbours j is:

Rij = (Rcell(j)−1Rxrd(j))−1Rcell(i)−1Rxrd(i). (4.10)

If particles i and j rotate identically and share the same local rigid body rotation,

then Rxrd(i) = Rxrd(j) which when plugged into equation (4.10) yields Rij(i) = I.

On other hand though, if particles rotate with respect to one another, an axis angle

calculation on Rij yields:
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Figure 4.4: Illustration of particle rearrangements in local averaging region centered
around particle i. Figure from [10].

θrel(i) =
1

N j
p

Nj
p∑

j=1

θijrel, (4.11)

where N j
p is the number of particles in the local averaging region. For the experiment,

we obtain Rxrd from the deformation gradient, which is one of the outputs of the

experiment. For the DEM simulation, Rxrd is obtained from the quaternions, which

are in the output file from the DEM simulation.

Now that we have described how we quantify and obtain the local rearrangements

in a granular assembly from the particle centroid positions and the particle radii, we

can apply this methodology to both the experimental shear band described in Chap-

ter 2 and the simulated granular sample under simple shear described in Chapter 3

to obtain the local rearrangements in both cases. We present our results in the next

chapter and compare the local rearrangement characteristics of the experiment and

the DEM simulation.
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Chapter 5

Results: comparison of
experimental shear band with
simple shear DEM simulation

After completing the local rearrangement calculations for the entire Ottawa sand

sample following the methodology in Chapter 4, we plot a map of the particle centered

γmax and ϵzz in Figure 5.1. We see a clearly discernible shear band.

From these heat maps shown in Figure 5.1, we can extract a shear band as

described in Figures 2.4, 2.5 and 2.6 . From equation (3.2), once we complete the local

rearrangement analysis for the shear band and we obtain ∆ϵSBxz , we can obtain the

equivalent timestep difference required in the DEM simulation ∆t. However, when we

complete the local rearrangement analysis for the DEM simulation between two time

instances with timestep difference ∆t, we observe that the homogenized microscopic

strain between the two times is less than that of the shear band’s macroscopic strain

(the homogenized microscopic strain is simply the average of the local strain ϵxz

component of all the particles under consideration). We posit that due to slip effects

at the boundary wall, the homogenized microscopic strain does not match that of the

shear band. Therefore, we choose a slightly larger time difference ∆t such that the
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Figure 5.1: Discernible Shear Band from heat map plot of (a) γmax and (b)ϵzz.

homogenized microscopic strain is the same as that of the shear band’s macroscopic

strain. We observe that the ∆t required to produce a homogenized microscopic shear

strain that matches that of the shear band is 380,000 timesteps.

5.1 Comparison of distributions of rearrangement

measures

The probability distributions of the different rearrangement metrics for both the

shear band and the granular sample under simple shear are shown in Figures 5.2,

5.3(a)-(b) and Figures 5.4(a)-(b). Note that the local strain tensors for all the par-

ticles in the shear band have been rotated by the shear band angle to resemble a

simple shear deformation. This rotation of the local strain tensors does not affect

γmax, ϵ+ or ϵ− which are derived from the principal local strains which remain un-

changed after rotation. The probability distributions of D2
min, γmax, and θrel indicate

that there is significantly greater local shear, particle rotation and non-affine defor-
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mation in the shear band than in the granular sample under simple shear. However,

the probability distributions for ϵvol indicate that the granular sample under sim-

ple shear experiences greater local dilation (ϵ+) and local contraction (ϵ−). Hence,

with the exception of local volumetric strain, the shear band generally experiences

greater local rearrangement. This anomaly for local volumetric strain needs further

exploration.

Figure 5.2: Comparison of the probability distributions of the shear strain component
ϵxz. Any variable under <> denotes the average of that variable. As is evident, the
average shear strain is the same for both the sample under simple shear and the
shear band. Probability distributions of shear strain component ϵxz in both the
sample under simple shear (yellow) and the shear band (blue) are shown.
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Figure 5.3: Comparison of the probability distributions of D2
min and θrel in both

the granular sample under simple shear and the shear band. Any variable under
<> denotes the average of that variable. Probability distributions of rearrangement
measures in both the sample under simple shear (yellow) and the shear band (blue)
are shown for: (a) D2

min (b) θrel.
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Figure 5.4: Comparison of the probability distributions of γmax and ϵvol in both
the granular sample under simple shear and the shear band. Any variable under
<> denotes the average of that variable. Probability distributions of rearrangement
measures in both the sample under simple shear (yellow) and the shear band (blue)
are shown for: (a) ϵvol (b) γmax.
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5.2 Strain contributions from rearranging regions

We calculate the fractional contribution ν to the macroscopic strain from the different

local rearranging regions using the formulation [9] :

ν(s, s+ 1, N%) =
1

Vrr

∑Nrr

i=1 ϵxz(i, s, s+ 1)Vi

∆ϵxz(s, s+ 1)
(5.1)

where s is the load step (for the shear band) or the time step (DEM), ϵxz(i, s, s+1) is

the particle centered strain xz component at the center of region i computed in (4.4)

and Vi is the rearrangement volume ( 4
3
π(3rp)

3). Vrr is the sum of Nrr volumes Vi.

N% refers to regions that experience the top N% of rearrangement by magnitude.

In Figures 5.5 (a) and (b) we calculate and observe the contributions of the

regions that are rearranging the most to the macroscopic strain. We do this for

the rearranging regions corresponding to each of the five rearrangement measures.

For this, we first order the rearrangements by magnitude from the largest(1%) to

smallest(100%), except for ϵ− which we order from the most negative (1%) to least

negative (100%). We select regions exhibiting the largest N% to (N + 10)% of

rearrangement, where N varies from 0 to 90 in increments of 10. If all the regions

contribute equally to the macroscopic strain or in other words, if the deformation is

affine, then ν(s, s+1, N%) = 0.1 or 10% for each value of N . On the other hand, if the

entire deformation is furnished only by the top 10% of rearranging regions, ν(s, s+

1, N%)=1 forN = 0 and ν(s, s+1, N%)=0 for allN ̸=0. We see that for both the shear

band and the granular sample under simple shear, the regions that rearrange the most

(regions experiencing the top N%ile of rearrangements) contribute the most to the

macroscopic shear strain for all five rearrangement measures. The contributions from

local regions experiencing the most local shear (γmax) and the most local contraction
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(ϵ−) to the macroscopic strain is higher for the sample under simple shear than for

the shear band.

Figure 5.5: Fractional contribution in % to the macroscopic strain from the
regions rearranging the most (for all the five different rearrangement measures
D2

min,γmax,θrel,ϵ+,ϵ−)(a) for the shear band (b) for the granular sample under simple
shear (DEM). We select regions exhibiting the largest N% to (N + 10)% of rear-
rangement, where N varies from 0 to 90 in increments of 10.
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5.3 Cross-correlations between rearrangements

The cross correlations between different rearrangements in regions rearranging the

most also shows some interesting results. The correlation coefficient between two

rearrangement measures g and e between the same steps s and s + 1 and in re-

gions experiencing the top N% of rearrangements measure e can be calculated using

formulation (5.2).

ρeg =

∑N%
i=1 [e(i, s, s+ 1)− < e(s, s+ 1) >][g(i, s, s+ 1)− < g(s, s+ 1) >]√∑N%

i=1 [e(i, s, s+ 1)− < e(s, s+ 1) >]2
√∑N%

i=1 [g(i, s, s+ 1)− < g(s, s+ 1) >]2

(5.2)

From Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 ((a)-(b)), we see that there is a negative

correlation between γmax and ϵvol in both the sample under simple shear and the shear

band. This indicates that regions that shear the most locally are also contracting,

which is consistent with STZ theory because shear transformation zones [6] must

contract to accommodate shear when they transform. Even though the trends are

similar, we observe a stronger correlation between γmax and ϵvol in the shear band

than in the granular sample under simple shear. In original shear transformation zone

(STZ) theory [6], the strains of these shear transformation zones are aligned along the

same principal axes as the macroscopic stress which restricts the coupling between

shear and dilation (γmax and ϵ+). D2
min and γmax are more strongly correlated in

rearranging regions in the granular sample under simple shear than in the shear

band.

Our most notable observation (from Figures 5.7 (a)-(b), Figures 5.9 (a)-(b), Fig-

ures 5.10 (a)-(b) curves in light blue (cyan) with upward triangular symbols) is that
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regions exhibiting the largest local shear strain (γmax) by magnitude tend to exhibit

a non-negligible correlation with the largest dilational (ϵ+) or contractional strain

(ϵ−) and regions exhibiting the largest dilational (ϵ+) or contractional strain (ϵ−)

exhibit non-negligible correlations with large local shear strain. Moreover, these

non-negligible correlations between large local shear (γmax) and large local dilational

(ϵ+) or contractional strain (ϵ−) are stronger and more pronounced in the shear

band than in the granular sample under simple shear. Similarly, regions exhibiting

the largest local shear strain (γmax) tend to have non-negligible correlations with the

non-affine deformation (D2
min) as seen in Figures 5.6 (a)-(b) and Figures 5.7 (a)-(b).

We also observe that regions that contribute the most to the macroscopic strain

exhibit a strong coupling between the local shear strain (γmax) and the local volu-

metric strain (ϵvol). This coupling is much stronger in the shear band (-0.6) than in

the sample under simple shear (-0.2) as is evident in Figures 5.11 (a)-(b). Similarly,

we also observe coupling between non-affine deformation (D2
min) and the local shear

strain (γmax).
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Figure 5.6: Cross-correlations between colocated rearrangements in the top N%
(from largest (1%) to smallest (100%) ) of all rearrangements in the shear band
(bottom) and the sample under simple shear (top). Correlation coefficient between
the different rearrangement measures (as calculated in (5.2)) in regions experiencing
top N% (by magnitude) of (a) D2

min in the sample under simple shear (b) D2
min in

shear band. In each case, the symbols in the legend correspond to e and g in (5.2)
and N goes from 0 to 45.
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Figure 5.7: Cross-correlations between colocated rearrangements in the top N%
(from largest (1%) to smallest (100%) ) of all rearrangements in the shear band
(bottom) and the sample under simple shear (top). Correlation coefficient between
the different rearrangement measures (as calculated in (5.2)) in regions experiencing
top N% (by magnitude) of (a) γmax in sample under simple shear (b) γmax in shear
band. In each case, the symbols in the legend correspond to e and g in (5.2) and N
goes from 0 to 45.
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Figure 5.8: Cross-correlations between colocated rearrangements in the top N%
(from largest (1%) to smallest (100%) ) of all rearrangements in the shear band
(bottom) and the sample under simple shear (top). Correlation coefficient between
the different rearrangement measures (as calculated in (5.2)) in regions experiencing
top N% (by magnitude) of (a) θrel in sample under simple shear (b) θrel in shear
band. In each case, the symbols in the legend correspond to e and g in (5.2) and N
goes from 0 to 45.
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Figure 5.9: Cross-correlations between colocated rearrangements in the top N%
(from largest (1%) to smallest (100%) ) of all rearrangements in the shear band
(bottom) and the sample under simple shear (top). Correlation coefficient between
the different rearrangement measures (as calculated in (5.2)) in regions experiencing
top N% (by magnitude) of (a) ϵ+ in sample under simple shear (b) ϵ+ in shear band.
In each case, the symbols in the legend correspond to e and g in (5.2) and N goes
from 0 to 45.
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Figure 5.10: Cross-correlations between colocated rearrangements in the top N%
(from most negative (1%) to least negative (100%) ) of all rearrangements in the
shear band (bottom) and the sample under simple shear (top). Correlation coefficient
between the different rearrangement measures (as calculated in (5.2)) in regions
experiencing top N% (by magnitude) of (a) ϵ− in sample under simple shear (b) ϵ−
in shear band. In each case, the symbols in the legend correspond to e and g in (5.2)
and N goes from 0 to 45.
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Figure 5.11: Cross-correlations between colocated rearrangements in the top N%
(from largest (1%) to smallest negative (100%) ) of all rearrangements in the shear
band (bottom) and the sample under simple shear (top). Correlation coefficient
between the different rearrangement measures (as calculated in (5.2)) in regions
experiencing top N% (by magnitude) of (a) ϵxz in sample under simple shear (b) ϵxz
in shear band. In each case, the symbols in the legend correspond to e and g in (5.2)
and N goes from 0 to 45.
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5.4 Spatial clustering of rearrangements

In Figures 5.13(a)-(d), 5.14(a)-(d), 5.12(a)-(b) we plot the locations of the regions

that experience the top 15 % of rearrangement by magnitude, for all five rearrange-

ment measures for both the shear band and the sample under simple shear. The

five rearrangement measures are ordered by magnitude from the largest (1%) to the

smallest (100%) (ϵ− is ordered from most negative to least negative). We examine

whether the regions that experience the most rearrangement are in the same loca-

tions in the shear band and the sample under simple shear. This can be done by

simple observation since the shear band and the sample under simple shear are of

the same dimensions and have about the same number of particles.

We view both the shear band and the sample under simple shear in the xz-plane

(both of same dimensions). The shear band, as described previously, is a narrow,

cuboidal region that is at an angle with the y-axis. This is how it is represented

in the left column of figures in Figures 5.13 (a),(c), Figures 5.14(a),(c) and 5.12(a).

We see in Figures 5.13 (a) and (b) that there is some spatial clustering of D2
min in

both the shear band and the sample under simple shear. We see that this clustering

in the sample under simple shear slightly resembles that of the shear band in that,

clustering occurs near the top and bottom. Although, in the shear band, this occurs

only at opposite corners of the top and the bottom sections. We also see spatial

clustering of γmax. But this clustering is at different locations for the shear band and

the sample under simple shear. As described in previous sections, a shear band has

an interior region of greater shear strain than the entire shear band itself. Hence,

we see that the γmax clustering is near the center in the shear band. For the sample

under simple shear, the clustering is near the bottom wall. For the remaining three
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rearrangement measures (θrel, ϵ+, ϵ−), we see no particular spatial clustering in the

shear band or the sample under simple shear. The locations of regions rearranging

the most (as measured by the remaining three : θrel, ϵ+, ϵ−) is also different in the

shear band and the the sample under simple shear.

Overall, we see that regions rearranging the most are at different locations in the

shear band and the sample under simple shear (from all rearrangement measures)

and there is no striking similarity. There is some spatial clustering in D2
min and γmax,

which is also different in the shear band and the sample under simple shear.

Figure 5.12: Locations of regions experiencing the top 15 %ile of θrel for both the
shear band and the sample under simple shear. The θrel of the regions are ordered by
magnitude from the largest (1%) to smallest (15%). The left figure is for the shear
band and the right figure is for the sample under simple shear. Both are cuboidal
regions that are 10dp wide and 12dp long with the one on the left (shear band) being
angled and the one on the right not being angled. We view 2D configurations of both
deformations along the y-axis (xz-plane view). Locations of regions that experience
the top 15 % (by magnitude) of (a) θrel in shear band (b) θrel in sample under simple
shear. The colorbar gives the magnitude of rearrangement in the corresponding
regions between smallest (15% ile) and largest (1%ile).

We performed different variations of the simple shear DEM simulation with higher

wall velocity, with lesser polydispersity and we also chose timesteps with timestep

difference ∆t from equation (3.2) at different locations in the macroscopic response
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curves (Figures 3.3 (a) and (b)) and we observed similar results. We summarize our

conclusions from the results that we have obtained in the next chapter.

Figure 5.13: Locations of regions experiencing the top 15 %ile of rearrangements
D2

min and γmax for both the shear band and the sample under simple shear. The
rearrangements are ordered by magnitude from the largest (1%) to smallest (15%).
The left column is for the shear band and the right column for the sample under
simple shear. The left figures are for the shear band and the right figures are for the
sample under simple shear. Both are cuboidal regions that are 10dp wide and 12dp
long with the ones on the left (shear band) being angled and the ones on the right
not being angled. We view 2D configurations of both deformations along the y-axis
(xz-plane view). Locations of regions that experience the top 15 % (by magnitude)
of (a) D2

min in shear band (b) D2
min in sample under simple shear (c) γmax in shear

band (d) γmax in sample under simple shear. The colorbar gives the magnitude of
rearrangement in the corresponding regions between smallest (15% ile) and largest
(1%ile).
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Figure 5.14: Locations of regions experiencing the top 15 %ile of rearrangements
ϵ+ and ϵ− for both the shear band and the sample under simple shear. The rear-
rangements are ordered by magnitude from the largest (1%) to smallest (15%) (most
negative to least negative for ϵ−). The left column is for the shear band and the right
column for the sample under simple shear. The left figures are for the shear band and
the right figures are for the sample under simple shear. Both are cuboidal regions
that are 10dp wide and 12dp long with the ones on the left (shear band) being angled
and the ones on the right not being angled. We view 2D configurations of both
deformations along the y-axis (xz-plane view). Locations of regions that experience
the top 15 % (by magnitude) of (a) ϵ+ in shear band (b) ϵ+ in sample under simple
shear (c) ϵ− in shear band (d) ϵ− in sample under simple shear.The colorbar gives us
the magnitude of rearrangement in the corresponding regions between smallest (15%
ile) and largest (1%ile).
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Chapter 6

Discussion and conclusion

We compared the probability distributions of the five different rearrangement met-

rics within the shear band with an equivalent simple shear simulation. In the DEM

simulation, the strain snapshot of the DEM simulation chosen is such that the ho-

mogenized microscopic strain that the central shear flowing region of the granular

sample experiences is the same as that of the shear band. We see that overall, there

is significantly greater non-affine deformation in the shear band than in the simple

shear simulation. The local relative grain rotations are also, on an average higher

in the shear band than in the sample under simple shear. The shear band also ex-

periences greater local shear than the sample under simple shear. Even though the

average of the volumetric strains ϵvol of the shear band and the simple shear simu-

lation are the same, there is significantly greater local volumetric strain (both local

dilation and local contraction) in the simply sheared granular sample. The variance

of ϵvol probability distribution for the simple shear simulation is almost twice that

of the shear band. So, the shear band experiences greater non-affine rearrangement,

local shear and local relative particle rotations whereas the granular sample under
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simple shear experiences greater local dilation and local contraction. We observe no

particularly striking similarities between the rearrangement probability distributions

of the two deformations.

We also see that local regions rearranging the most contribute heavily to the

macroscopic strain in the sample under simple shear and the contributions are about

the same as in the shear band (the highest being about 37 % from regions expe-

riencing the most γmax in the granular sample under simple shear). Perhaps the

contributions from these heavily rearranging regions is the only thing that remains

the same between the sample under simple shear and the shear band. Rearranging

regions of the same rearrangement metric contribute about the same fraction to the

macroscopic strain whether in the sample under simple shear or the shear band.

We observe slightly stronger cross-correlations between rearrangements in the

shear band than in the granular sample under simple shear. We initially thought

that these higher cross-correlations may be due to the higher friction in Ottawa

sand. However, re-running the DEM simulations with a higher inter-particle friction

coefficient does not yield stronger cross-correlations. While the trends may be similar

the rearrangements are slightly more strongly correlated with one another in the shear

band. This effect is particularly pronounced for the correlation between γmax and

ϵvol. The negative correlation between γmax and ϵvol is stronger in the shear band

than in the granular sample under simple shear.

In the recent paper from the Hurley research group [9], it was suggested that local

rearrangements depend much more on local structure than any other quantity (such

as rearrangement history, particle stresses, loading etc.). Hence, while the shear

band and the granular sample under simple shear may be under similar loading,

they may have significantly different structure measures, such as local porosity (ϕ),
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which may explain the lack of similarity in the rearrangements between the two. We

believe that since the grains in the shear band have undergone significant deviatoric

loading before reaching load steps 4 and 5, the shear band fabric and structure is

different from that of the granular sample under steady state simple shear. We believe

the explanations for the differences in the rearrangement distributions between the

shear band and the sample under simple shear lie in the difference in the structure

of the granular assembly of these two deformations. We can calculate the correlation

between local porosity (ϕ) at step s and step s+ 1 and any rearrangement measure

in regions experiencing the top N% of rearrangement using :

ρ
ϕ(s)
e(i,s,s+1) =

∑N%
i=1 [e(i, s, s+ 1)− < e(s, s+ 1) >][ϕ(i, s)− < ϕ(s) >]√∑N%

i=1 [e(i, s, s+ 1)− < e(s, s+ 1) >]2
√∑N%

i=1 [ϕ(i, s)− < ϕ(s) >]2

(6.1)

In Figure 6.1, we plot the distribution of the local porosity ϕ (ratio of total volume

of voids in the local averaging region to the volume of the local averaging region) at

the first of the two load steps or timesteps in the shear band and the sample under

simple shear. We see that the distribution of the shear band local porosity almost

has twice the variance. In Figures 6.2 (a) and (b) we see the correlations between

the rearrangements and the local porosity in the regions rearranging the most. We

see that the rearrangements are correlated with the porosity differently in the shear

band than in the sample under simple shear. The correlations are slightly stronger in

the granular sample under simple shear than in the shear band. Further exploration

of differences in other structure measures may help us understand the difference in

local rearrangements between the shear band and the sample under simple shear.

Our major conclusion is that a shear band and a granular sample of same size,
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Figure 6.1: Distributions of local porosity for the granular sample under simple shear
and the shear band.

with the same number of particles under simple shear experiencing the same macro-

scopic shear strain do not necessarily experience the same local rearrangements.

Similarity in dimensions and macroscopic strain are not sufficient for the local rear-

rangements to be comparable. This tells us that local rearrangements in granular

materials may depend much more on other characteristics such as their local struc-

ture.
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Figure 6.2: Correlation of rearrangements (e(s, s+1)) with local porosity ϕ(s) (a) for
the sample under simple shear (b) for the shear band. The correlation is calculated
using (6.1). In all cases, rearrangements are only considered in top N% as ordered
by rearrangement magnitude from largest (1%) to smallest (100 %).

In the future, we intend to perform an in-depth analysis of the dependence of
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the local rearrangements on local structure. We mentioned local porosity as one

of many different structure measures in our discussion. However, there is another

way of characterising the structure of the granular assembly. The granular assembly

can be treated as an undirected graph or a network with the particles as nodes and

the contacts between the particles as edges. Recent studies [23, 18] have proposed

that network measures as structure measures probably influence the local rearrange-

ments much more than the local porosity. We believe an in-depth exploration of

the different local structure measures of granular assemblies and their influence on

local rearrangements will give us more detailed insights in to the micromechanics of

granular materials.
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tal investigation of localised deformation in sand: A discrete particle tracking

approach, Acta Geotechnica 7 (08 2012). doi:10.1007/s11440-011-0151-6.

[2] S. Hall, M. Bornert, J. Desrues, Y. Pannier, N. Lenoir, G. Viggiani, P. Bésuelle,

Discrete and continuum analysis of localised deformation in sand using x-ray

ct and volumetric digital image correlation, Géotechnique 60 (01 2010). doi:
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