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Abstract

This thesis addresses the problem of plant parameter model identification for nonlinear finite-

dimensional second-order plant models for underwater vehicles from experimental data. These

models are necessary for predictive simulation studies, model-based control algorithms, and model-

based approaches to fault detection. The structure of these dynamical models can be derived using

first principles, but the model parameters such as mass, drag, and thrust coefficients must be

determined experimentally. This thesis provides solutions to several parts of this problem.

First, this thesis reports a derivation of a finite dimensional second-order using Newtonian

dynamics. The general form of these equation of motion are widely accepted in the research

literature, yet their full and detailed derivation using Newtonian dynamics is often omitted. This

thesis seeks to address this lacuna.

Second, this thesis reports an extension of an adaptive identifier (AID) to underactuated, three

degree of freedom underwater vehicles. Results of a simulation study are reported. Additionally,

the same AID is extended to simultaneously identify plant and control parameters for six degree

of freedom underwater vehicles. Another extension of the same AID is reported for plant models

with diagonal mass and drag matrices. Stability proofs are reported for all new AIDs.

Finally, this thesis reports a new algorithm to estimate the parameters of dynamical plants

using framework of the random sample consensus (RANSAC) algorithm. This new algorithm is

shown in simulation to outperform traditional least squares parameter identification methods with

respect to accuracy when observational data is corrupted by non-Gaussian noise.
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Chapter 1

Introduction

The undersea environment continues to be an active area of interest for its natural resources,

strategic military opportunities, many scientific frontiers, and a growing tourism industry. This

environment is extreme and in many cases inaccessible to humans directly. For these reasons,

unmanned underwater vehicles (UUVs) are designed and operated to extend our access to the

subsea environment. Modern UUVs have a long history starting in 1866 with the invention of

the first mechanically controlled, self-propelled submersible torpedo [16] which was followed

by widespread use of simple guided torpedoes in World War I. Since World War I, UUVs have

continued to become more capable and many different types of UUVs are currently deployed on

scientific explorations, used to build and maintain critical undersea infrastructure, and utilized

during national defense operations.

State-of-the-art UUVs are often equipped with large instrumentation suites to measure veloc-

ities, depth, and attitude along with other signals, and employ on-board computers to deploy

algorithms for navigation, control, and other autonomous behaviors. There are a wide range of

reported actuation methods of modern UUVs including conventional thrusters, control surfaces

and other bio-inspired mechanisms [44], [27], [20], and [6]. However, operational performance

of UUVs is often contingent on accurate identification of dynamical plant and actuation models

that are unique to the configuration of each vehicle. Accurate model identification is required for
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predictive simulation studies, the design and tuning of model-based UUV navigation and control

algorithms, and model-based approaches to fault detection.

The general structure of the finite-dimensional dynamical plant model for UUVs is widely

accepted, and a complete derivation of the equations of motion (EOM) is presented in Chapter 2.

Additionally, the structure of many types of control models have been reported and experimen-

tally verified by several researchers such as those in [41], [27], and [6]. However, all plant and

actuator parameters such as added mass, drag, and control fin coefficients must be determined

experimentally.

There are several reported approaches to estimating these plant and actuator parameters, some-

times called parameter identification or model fitting. These approaches include least squares

methods, adaptive methods, Kalman filters and their nonlinear extensions, and other machine

learning or neural net methods. This thesis reports two new approaches to estimating parameters

of both UUV plants and actuator models; one approach extends a previously reported adaptive

identifier (AID) to estimate actuator-model parameters in addition to plant parameters of under-

actuated UUVs, and the second approach implements a random sample consensus (RANSAC)

algorithm for robust estimation of dynamical models. Both new approaches offer advantages over

other existing methods. The AID extension enables the AID to estimate more parameters, and

the algorithm based on the RANSAC framework provides more robust estimation in the from

experimental data with non-Gaussian noise.

This thesis is organized in the following manner: Chapter 2 presents the derivation of the

widely accepted EOM applicable to all underwater vehicles using Newtonian dynamics. EOM

are reported for both the general six degree of freedom (6-DOF) class of UUVs and the three

degree of freedom (3-DOF) class of UUVs with motion in only the surge, sway, and heading

directions. Chapter 3 reports an extension of the AID reported in [36] for underactuated vehicles

in 3-DOF. Performance of this extension is evaluated in a simulation study of a 3-DOF UUV.

Chapter 3 also reports an extension of the AID to simultaneously evaluate the control parameter
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identification for 6-DOF unmanned underwater vehicles (UUVs). Preliminary proofs of stability

are reported for all new AIDs. Finally, Chapter 4 presents a new algorithm based on the RANSAC

framework entitled "Dynamical Plant Identification using RANSAC" (DIRANSAC) that is designed

to identify dynamical plant parameters in the presence of noisy experimental data with outliers.

The performance of the DIRANSAC algorithm is evaluated in a simulated study of a one degree of

freedom (1-DOF) UUV.
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Chapter 2

Dynamics of Underwater Vehicles

This chapter presents a derivation of the six degree of freedom (6-DOF) equations of motion (EOM)

for fully submerged underwater vehicles using classical Newtonian dynamics. This entire chapter

draws substantially from published work on the dynamics of rigid-body underwater vehicles done

by Steve Martin, Louis Whitcomb,[31], Thor Fossen [12], and others as cited. This derivation and

the resulting final dynamical equations for underwater vehicles are not new. However, this section

aims to present a complete and thorough derivation of these often-cited dynamical equations.

Often only the final results are published without disclaimers and without stating the underlying

assumptions. The step-by-step derivation of the EOM presented here allows for the possibility of

several structural observations.

Many mathematical models and derivations of the EOM of underwater vehicles are reported.

The first finite-dimensional mathematical models for underwater vehicles were developed at the

US Navy’s David Taylor Model Basin beginning in the 1950s [13] [14]. In 1961 Imlay in [23] reported

an expansion of these models to include more complete definitions of added mass. Revisions to

these early mathematical models were reported in 1979 by Feldman [9], and these revisions include

the clarification on the definition of notation, coordinate systems, and sign convention. These early

mathematical models were reported without derivation.

Sagatun in [12] reports a derivation of the EOM for marine vehicles using Lagrangian Dynam-

ics, and Fossen in [12] reports an approach using the quasi-Lagrangian approach. In addition,
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McFarland in [37] approaches the problem by making extensive use of the properties of the Spe-

cial Euclidean group SE(3) and the associated Lie Algebra se(3). These other approaches have

several advantages, including the use of generalized coordinates in Lagrangian formulations and

manifolds in SE(3) formulations. The reader is referred to these studies for additional details.

The Newtonian approach builds from familiar first principles, starting with Newton’s second

law which states that the sum of the forces, ∑ w f , acting on the vehicle is equal to the time derivative

of linear momentum

∑ w f⃗ =
d
dt
[w Mw ẋ] = w Ṁw ẋ + w Mw ẍ, (2.1)

where w M ∈ R3x3 is the vehicle mass matrix and w ẋ ∈ R3 its linear velocity, both as seen in the

world frame denoted by the superscript “w”. Newton’s second law also states that the sum of the

moments, ∑ wt, is equal to the time derivative of angular momentum of a rigid body about the

origin of the world frame

∑ w⃗t =
d
dt
[w Iwω⃗ + wx× w Mw ẋ] (2.2)

= w İwω⃗ + w Iw ˙⃗ω + w ẋ× w Mw ẋ + wx× d
dt
[w Mw ẋ], (2.3)

where w I ∈ R3x3 is the moment of inertia matrix of the vehicle and wω ∈ R3 its angular velocity.

The vector cross product is denoted as × and its relationship to the J() operator is defined in (2.11).

Upon inspection of (2.1) and (2.3) we can see that all the terms are defined to be relative to a

world frame which is assumed to be an inertial reference frame. This is an essential assumption

mandated by Newton’s first law. However, we will find it advantageous to rewrite (2.1) and

(2.3) to contain only velocities as measured relative to the body frame of the vehicle and the time

derivative of these so called body velocities. The body frame is not an inertial frame of reference

and may seem awkward at first, but this arrangement affords some key conveniences. First this

formulation allows for the mass and inertia matrices to be defined such that they are constant. It
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is also convenient for many underwater vehicles to be instrumented with sensors that directly

measure motions relative to the body frame.

With this goal in mind, we define the following coordinate frames in Fig 2.1:

• The world frame “w” is an inertial frame of reference.

• The body frame “b” is a body fixed frame coincident with the center of mass (COM) and

aligned along the principal axis.

• The body frame “L” is an arbitrary body fixed frame, with the same orientation as the “b”

frame but offset from the “b” frame by the vector ℓ. In practice a common location of the “L”

frame is the center of pressure.

Figure 2.1: Illustration of coordinate frames

The remainder of this Chapter is organized as follows: Section 2.1 reports a derivation of

rigid body kinematics in the body center of mass frame. Section 2.2 reports a derivation of rigid
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body kinematics in the “L” frame not coincident with the center of mass. Section 2.3 reports a

derivation of the hydrodynamics of underwater vehicles relative to the “b” or COM frame. Section

2.4 reports a derivation of the hydrodynamics of underwater vehicles relative relative to the “L”

frame. Section 2.5 reports a derivation of the rigid body dynamics of underwater vehicles. Section

2.6 reports a complete derivation of of the EOM of 6-DOF underwater vehicles by combining the

hydrodynamic and rigid body terms. Finally, Section 2.7 reports a derivation of the common three

degree of freedom (3-DOF) class of vehicles where only the surge, sway, and heading of the vehicle

are considered.

2.1 Rigid Body Kinematics in the Body Fixed COM Frame

In Fig 2.1 wx(t) is the vector from the origin of the world frame to the origin of the COM frame of

the vehicle relative to, or as measured in, the world frame. We denote the COM frame as the “b”

frame. The orientation or attitude of the vehicle relative to the world frame is defined by the vector

a⃗(t). We use Euler Angles to parameterize the orientation of the underwater vehicle which have an

intuitive interpretation of roll pitch and yaw, but they exhibit a singularity at pitch angles of ±π/2.

However, this orientation is rare for many underwater vehicles. We define the non-inertial body

velocity bvx as the velocity of the underwater vehicle in the “w” frame (denoted as ẋ(t)) projected

instantaneously on the body fixed frame b. Mathematically,

bvx = b
wR(⃗a)w ẋ(t), (2.4)

where the subscript x refers to the vector from the world frame to the “b” frame. The coordinate

transformation b
wR(⃗a) describes the orientation of vectors in the world frame as they appear in the

b frame. b
wR(⃗a) is clearly a function of a⃗(t), and regardless of the chosen parameterization of a⃗(t),

b
wR(⃗a) is always a member of the group of rigid body rotations SO(3). The group SO(3) is defined

as

SO(3) = {R ∈ R3 : RT R = I, det(R) = +1, } (2.5)
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The inverse of the rotation matrix b
wR(⃗a) is defined by the properties of group SO(3) as

b
wR−1 (⃗a) = b

wRT (⃗a) = w
b R(⃗a). (2.6)

Here w
b R(⃗a) can be physically interpreted as a rotation matrix that describes the orientation

of vectors in the body frame as they appear in the world frame. Secondly, there is an important

relationship between the d
dt
[w

b R(⃗a)
]

and the angular velocity of the COM frame. We start with the

inverse property of SO(3) and take the time derivative to yield

w
b R(⃗a) w

b RT (⃗a) = I (2.7)

d
dt

[w
b R(⃗a) w

b RT (⃗a)
]
=

d
dt

I (2.8)

w
b Ṙ(⃗a) w

b RT (⃗a) + w
b R(⃗a) w

b ṘT (⃗a) = 0w
b Ṙ(⃗a) w

b RT (⃗a) = −
(

w
b Ṙ(⃗a) w

b RT (⃗a)
)T

. (2.9)

Clearly b
wṘ(⃗a) b

wRT (⃗a) is skew symmetric. We define the instantaneous angular velocity of the

body as seen in the world frame denoted as wω⃗ = [ωxo ; ωyo ; ωzo ] to be

J(wω⃗) = w
b Ṙ(⃗a) w

b RT (⃗a), (2.10)

where the mapping J : IR3 ↦→ SK(3) ∈ IR3x3 defined as

J
( ⏐⏐⏐⏐⏐⏐

a
b
c

⏐⏐⏐⏐⏐⏐
)
=

⎡⎣ 0 −c b
c 0 −a
−b a 0

⎤⎦ . (2.11)

The operator J is often described as the skew symmetric operator and is related to vector cross

product operation (denoted as ×) where a⃗× b⃗ = J(⃗a)⃗b.

We define the instantaneous body angular velocity as the spacial velocity projected onto the b

frame

J(bω⃗) = w
b RT (⃗a) w

b Ṙ(⃗a). (2.12)
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Furthermore the relationship between wω⃗ and bω⃗ is

J(bω⃗) = w
b RT (⃗a) J(wω⃗) w

b R(⃗a) (2.13)

or

bω⃗ = w
b RT (⃗a)wω⃗. (2.14)

We also note for all R ∈ SO(3) that R distributes over the cross product thus ∀ p1, p2 ∈ IR3

R(p1 × p2) = Rp1 × Rp2 (2.15)

RJ(p1)p2 = J(Rp1)Rp2. (2.16)

Returning again to (2.1) and (2.3) we note that these equations contain linear acceleration w ẍ

and the angular acceleration w ˙⃗ω of the vehicle both referenced to the world frame “w”. Again it

will be advantageous to express these terms as the time derivatives of linear body velocities bv̇x

and angular body velocities b ˙⃗ω.

We start with finding an expression for w ẍ by multiplying both sides of (2.4) by w
b R(⃗a), rear-

ranging and taking the time derivative, and substituting in (2.12) which yields

d
dt

w ẋ(t) =
d
dt

[w
b R(⃗a)bvx

]
(2.17)

w ẍ(t) = w
b Ṙ(⃗a)bvx +

w
b R(⃗a)bv̇x (2.18)

= w
b R(⃗a)J(bω⃗)bvx +

w
b R(⃗a)bv̇x (2.19)

= w
b R(⃗a)

(
J(bω⃗)bvx +

bv̇x

)
. (2.20)

An expression for b ˙⃗ω is found by taking the time derivative of (2.14) to yield

b ˙⃗ω = b
wR(⃗a)w ˙⃗ω. (2.21)

Force and moment vectors on the left side of (2.1) and (2.3) respectively can also be defined relative
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to the body frame as

w f⃗ = w
b R(⃗a)b f⃗ (2.22)

w⃗t = w
b R(⃗a)b⃗t + J(wx)w f⃗ . (2.23)

The sum of moments in the world frame includes the contribution from the forces acting on the

vehicle body at the moment arm wx.

Lastly expressions for w Ṁ and w İ can be found by first noting the following similarity relation-

ship between the “w” and “b” frame,

w M = b
wRT (⃗a) b M b

wR(⃗a) (2.24)

w I = b
wRT (⃗a) b I b

wR(⃗a), (2.25)

where w I and w M are both positive definite symmetric (PDS), time varying matrices expressed

relative to the “w” frame coordinate system. By matrix similarity b I and b M are also both PDS

matrices, but expressed relative to the “b” frame coordinate system. b I and b M are assumed to

be constant, or equivalently the mass and the inertia of many underwater vehicles do not change

when measured relative to a body fixed frame. This time invariance assumption can be justified for

many classes of unmanned underwater vehicles (UUVs).

The similarity relationship in (2.24) and (2.25) is widely accepted and can be quickly justified

using a simple example. Say we define an inertial frame “j” and j ξ⃗ is the acceleration a body the

with a mass matrix j M subject to a net force j f⃗ with the superscript j denoting all are relative to the

“j” frame. From Newton’s second law the three are related by

j f⃗ = j M j ξ⃗ (2.26)

We assume there is another reference frame “k” and the rotation matrix k
j R is the transformation

between frame “j” and frame “k”. Both the force and acceleration vectors can be expressed in the
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“k” frame as k f⃗ = k
j R j f⃗ and k ξ⃗ = k

j R j ξ⃗, respectively. Substituting these into (2.26) and using a

property of SO(3) yields

j
kR k f⃗ = j M j

kR k ξ⃗ (2.27)

k f⃗ =
j
kRT j M j

kR k ξ⃗ (2.28)

k f⃗ = k M k ξ⃗. (2.29)

This similarity transformation is still applicable even if the coordinate frames “j” and “k” are

non-inertial coordinate frames.

Since b I and b M are both assumed time invariant, we use the product rule to get time derivatives

of (2.24) and (2.25) as

w Ṁ = b
wṘT (⃗a) b M b

wR(⃗a) + b
wRT (⃗a) b M b

wṘ(⃗a) (2.30)

w İ = b
wṘT (⃗a) b I b

wR(⃗a) + b
wRT (⃗a) b I b

wṘ(⃗a). (2.31)

Substituting (2.12) yields

w Ṁ = b
wRT (⃗a)J(bω) b M b

wR(⃗a) + b
wRT (⃗a) b M J(bω)Tb

wR(⃗a) (2.32)

w İ = b
wRT (⃗a)J(bω) b I b

wR(⃗a) + b
wRT (⃗a) b I J(bω)Tb

wR(⃗a). (2.33)
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2.2 Rigid Body Kinematics in the Body Fixed “L” Frame

It can be advantageous to write the EOM for underwater vehicles in an arbitrary body fixed frame

that is not the COM or “b” frame. We will denote this arbitrary frame as the “L” frame. There are

several reasons one might find this change of frame helpful. First, it can be difficult to measure

dimensions relative to the center of mass that are needed for sensor offset kinematics and alignment.

Additionally, it is common in naval engineering to write the EOM of a vessel relative to the ship’s

pivot point, or the point on an underactuated vessel which the ship pivots about during turning

maneuvers. Seo in [46] reviews the definition of the pivot point in surface vessels, which may also

be applicable to underactuated underwater vehicles. It is also common practice to utilize body

frames that are not located at the center of mass when in designing control algorithms. An example

may be found in the trajectory tracking controllers reported in [30].

In a similar manner as (2.4) we define the translational body velocity of the ”L” frame to be the

instantaneous projection of wẏ onto the body frame. Mathematically,

bvy = b
wR(⃗a)wẏ, (2.34)

where the subscript y denotes the position vector y and the superscript b denotes the body frame.

In this derivation the orientation of the “L” frame will be defined to be the same as the orientation

of the “b” frame. To state this explicitly

w
L R(⃗a) = w

b R(⃗a)b
LR (2.35)

= w
b R(⃗a)I3x3 (2.36)

= w
b R(⃗a). (2.37)

For convenience we will continue to use the notation for the “b” frame in transformations between

the world and body frames. However, if there is a time invariant transformation between the two

frames “L” and “b”, or mathematically b
LR ̸= I3x3, then the following derivation would need to be

12



modified accordingly to reflect (2.35) and

w
L Ṙ(⃗a) = w

b Ṙ(⃗a)b
LR. (2.38)

Similar to (2.21) differentiating (2.34) yields

wÿ = w
b R(⃗a)

(
J(bω⃗)bvy +

bv̇y

)
. (2.39)

The position of the “L” frame relative to the “b” frame is

wy = wx + w
b R(⃗a) bℓ. (2.40)

We need an expression for bvy. Taking the time derivative yields

wẏ = w ẋ + w
b Ṙ(⃗a) bℓ (2.41)

= w ẋ + w
b R(⃗a) J(bω) bℓ (2.42)

= w ẋ + w
b R(⃗a) JT(bℓ) bω. (2.43)

Substituting in (2.4) and (2.34) and multiply by w
b RT (⃗a) results in

w
b R(⃗a)bvy = w

b R(⃗a)bvx +
w
b R(⃗a) JT(bℓ) bω (2.44)

bvy = bvx + JT(bℓ)bω, (2.45)

or equivalently,

bvx = bvy + J(bℓ)bω⃗. (2.46)

The expression for the time derivative of bvx can be found by simply taking the time derivative of

both sides which results in

bv̇x = bv̇y + J(bℓ)b ˙⃗ω. (2.47)

And lastly, we note that the mass matrix in the “L” frame is equivalent to the mass matrix in the

“b” frame, i.e ℓM = b M. This is a consequence of (2.24) and the assumption (2.37). We will use b M
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for convenience. The relationship between the moment of inertia in the “L” frame and the moment

of inertia in the “b” frame is defined using the generalized principal axis theorem [24], thus

ℓ I = b I + JT(bℓ) b MJ(bℓ). (2.48)

2.3 Hydrodynamic EOM in the Body Fixed COM Frame

The hydrodynamics of underwater vehicles relative to the “b” frame can be completed by returning

to the definitions of Newton’s Second Law in (2.1) and (2.3). In the case of hydrodynamics the

matrices w M and w I contain terms often referred to as added mass, mass ascension, apparent

mass, virtual mass and hydrodynamic added mass in the naval dynamics literature [31] [12] [22].

We will consider them to be positive definite symmetric (PDS). Additionally, we define the net

hydrodynamic force and moment acting on the vehicle to be w f⃗H and w⃗tH , respectively.

Starting with the linear degrees of freedom we can substitute (2.32), (2.4), (2.24), and (2.20) into

(2.1), thus

w f⃗H =b
wRT (⃗a)J(bω) b M b

wR(⃗a) b
wRT (⃗a) bvx +

b
wRT (⃗a) b M J(bω)T b

wR(⃗a) b
wRT (⃗a) bvx

+ b
wRT (⃗a) b M b

wR(⃗a)w
b R(⃗a)

(
J(bω⃗)bvx +

bv̇x

)
(2.49)

=b
wRT (⃗a)J(bω) b M bvx +

b
wRT (⃗a) b M J(bω)T bvx

+ b
wRT (⃗a) b M J(bω⃗)bvx +

b
wRT (⃗a) b Mbv̇x (2.50)

=b
wRT (⃗a)

(
J(bω) b M bvx +

b Mbv̇x

)
. (2.51)

Substituting in (2.22) to the left hand side and multiplying on the left by b
wR(⃗a) results in

w
b R(⃗a) b f⃗H = b

wRT (⃗a)
(

J(bω) b M bvx +
b Mbv̇x

)
(2.52)

b f⃗H = J(bω) b M bvx +
b Mbv̇x. (2.53)
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For the rotational degrees of freedom we consider (2.3) and (2.23). Using the definition (2.1) the

term wx× d
dt
[w Mw ẋ] can be canceled as

w
b R(⃗a)b⃗t +����J(wx)w f⃗ =w İwω⃗ + w Iw ˙⃗ω + w ẋ× w Mw ẋ +

��������
wx× d

dt
[w Mw ẋ] (2.54)

w
b R(⃗a)b⃗t = w İwω⃗ + w Iw ˙⃗ω + w ẋ× w Mw ẋ (2.55)

We substitute (2.33), (2.14), (2.25), (2.21), (2.4), and (2.24) into (2.3), and note that JT(bω)bω = 0,

and utilize the distributive property of SO(3) in (2.16). These steps result in

w
b R(⃗a) b⃗tH = b

wRT (⃗a)J(bω) b I b
wR(⃗a) w

b R(⃗a) bω + b
wRT (⃗a) b I J(bω)T b

wR(⃗a) w
b R(⃗a) bω

+ b
wRT (⃗a) b I b

wR(⃗a) w
b R(⃗a) bω̇ + b

wRT (⃗a) bvx × b
wRT (⃗a) b M b

wR(⃗a) b
wRT (⃗a) bvx (2.56)

= b
wRT (⃗a)J(bω) b I bω + b

wRT (⃗a) b I J(bω)T bω

+ b
wRT (⃗a) b I bω̇ + b

wRT (⃗a) bvx × b
wRT (⃗a) b M bvx (2.57)

= b
wRT (⃗a)

(
J(bω) b I bω + b I bω̇ + J(bvx)

b
wRT (⃗a) b M bvx

)
. (2.58)

Multiplying on the left by b
wR(⃗a) results in

b
wR(⃗a) w

b R(⃗a) b⃗tH = b
wR(⃗a) b

wRT (⃗a)
(

J(bω) b I bω + b I bω̇ + J(bvx)
b
wRT (⃗a) b M bvx

)
(2.59)

b⃗tH = J(bω) b I bω + b I bω̇ + J(bvx)
b
wRT (⃗a) b M bvx. (2.60)
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Equations (2.53) and (2.60) can be combined by using the fact that J(bω) b M bvx = JT(b Mbvx)bω

to yield

⏐⏐⏐⏐b f⃗H
b⃗tH

⏐⏐⏐⏐ = [ b M 03x3
03x3

b I

] ⏐⏐⏐⏐bv̇x
b ˙⃗ω

⏐⏐⏐⏐+ [
03x3 JT(b Mbvx)

JT(b Mbvx) JT(ℓ Ibω⃗)

] ⏐⏐⏐⏐bvx
bω⃗

⏐⏐⏐⏐ (2.61)

⏐⏐⏐⏐b f⃗H
b⃗tH

⏐⏐⏐⏐ =b MA

⏐⏐⏐⏐bv̇x
b ˙⃗ω

⏐⏐⏐⏐+ bCA

⏐⏐⏐⏐bvx
bω⃗

⏐⏐⏐⏐ . (2.62)

Together the matrices

b MA =

[ b M 03x3
03x3

b I

]
(2.63)

and

bCA =

[
03x3 JT(b Mbvx)

JT(b Mbvx) JT(ℓ Ibω⃗)

]
(2.64)

are often referred to as the added mass terms, which are considered radiation induced forces in

naval architecture. Here the force and moment vectors b f⃗H and b⃗tH represent the hydrodynamic

forces and moments acting on the vehicle. There are many hydrodynamic forces and moments

that act on an underwater vehicle, but we consider those that dominate in the hydrodynamic EOM

to be the drag terms and buoyancy terms. A discussion concerning the omitted effects of wind,

currents, waves, and other external environmental forces is provided in [12].

Infinite-dimensional drag forces acting on underwater vehicles are typically modeled using

quadratic drag terms. This model structure is confirmed in experimental results and conclusions in

[31] and [37] and is widely used in the literature. Some authors consider other models for drag,

and the most common alternative is to use a sum of linear drag and quadratic drag terms [31], [37],

[12]. However, we only consider quadratic drag terms in this derivation. This is the most common

model in literature and we can justify the omission of the linear drag term using first principles.

Linear, or viscous resistance drag dominates systems with very low Reynolds numbers (Re < 1).

Underwater vehicles of interest here have sizes on the order of m3 and usually operate at higher

Reynolds numbers.
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We define the hydrodynamic drag to be the quadratic drag matrix

bDQ(bvx, bω⃗) =
3

∑
i=1
|vxi |Di +

3

∑
i=1
|ω⃗xi |Di, (2.65)

where each PDS drag matrix for the ith degree of freedom (i = 1, 2, . . . 6) is defined as

bDi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bDi1,1
bDi1,2

bDi1,3
bDi1,4

bDi1,5
bDi1,6

bDi2,1
bDi2,2

bDi2,3
bDi2,4

bDi2,5
bDi2,6

bDi3,1
bDi3,2

bDi3,3
bDi3,4

bDi3,5
bDi3,6

bDi4,1
bDi4,2

bDi4,3
bDi4,4

bDi4,5
bDi4,6

bDi5,1
bDi5,2

bDi5,3
bDi5,4

bDi5,5
bDi5,6

bDi6,1
bDi6,2

bDi6,3
bDi6,4

bDi6,5
bDi6,6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.66)

Buoyant forces are present in all underwater vehicles that displace water. The net buoyant force

of a vehicle with dry mass m, water density ρ, and displaced volume▽ is

w f⃗b =w f⃗g − w f⃗buoy (2.67)

=mw g⃗− ρ▽ w g⃗ (2.68)

=(m− ρ▽)w g⃗. (2.69)

This formulation follows the convention that negatively buoyant vehicles will sink while positively

buoyant vehicles will rise if the sign of the gravity vector w g⃗ is negative downward. In the “b”

frame these vectors are defined as

b f⃗b =b
wR(⃗a) w f⃗b (2.70)

=b
wR(⃗a)(m− ρ▽)w g⃗. (2.71)

If the center of mass and center of buoyancy are not collocated then these forces induce a

righting moment on the vehicle. Define brcb to be the vector from the “b” frame to the center of
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buoyancy. Therefore the net righting moment is

bτb =J(brcb)
b f⃗buoy (2.72)

=J(brcb)
b
wR(⃗a) (−ρ▽)w g⃗. (2.73)

Let bG (⃗a) be the combined vector of buoyant forces (2.71) and righting moment (2.73) defined as

bG (⃗a) =
⏐⏐⏐⏐ b

wR(⃗a)(m− ρ▽)w g⃗
J(brcb)

b
wR(⃗a) (−ρ▽)w g⃗

⏐⏐⏐⏐ (2.74)

Thus we can equate the hydrodynamic terms in the body “b” frame (2.61) to (2.65) and (2.74) as

⏐⏐⏐⏐b f⃗H
b⃗tH

⏐⏐⏐⏐ =− bDQ(bvx, bω⃗)

⏐⏐⏐⏐bvx
bω⃗

⏐⏐⏐⏐+ ⏐⏐⏐⏐ b
wR(⃗a)(m− ρ▽)w g⃗

J(brcb)
b
wR(⃗a) (−ρ▽)w g⃗

⏐⏐⏐⏐ (2.75)

=

[ b M 03x3
03x3

b I

] ⏐⏐⏐⏐bv̇x
b ˙⃗ω

⏐⏐⏐⏐+ [
03x3 JT(b Mbvx)

JT(b Mbvx) JT(ℓ Ibω⃗

] ⏐⏐⏐⏐bvx
bω⃗

⏐⏐⏐⏐ , (2.76)

or, equivalently

0 = b MA

⏐⏐⏐⏐bv̇x
b ˙⃗ω

⏐⏐⏐⏐ bCA

⏐⏐⏐⏐bvx
bω⃗

⏐⏐⏐⏐+ bDQ(bvx, bω⃗)

⏐⏐⏐⏐bvx
bω⃗

⏐⏐⏐⏐− bG (⃗a). (2.77)

2.4 Hydrodynamic EOM in the Body Fixed “L” Frame

Newton’s EOM in a coordinate frame non-coincident with the COM can be found by substituting

(2.46) and (2.47) into (2.53), thus

ℓ f⃗H = b f⃗H (2.78)

= J(bω⃗)b Mbvx +
b Mbv̇x (2.79)

= J(bω⃗)b Mbvy + J(bω⃗)b MJ(bℓ)bω⃗ +b Mbv̇y +
b MJ(bℓ)b ˙⃗ω. (2.80)

The torque applied to the body in the “L” frame is defined as the sum of the contribution from

moments due to forces in the “b” frame and the net torque in the “b” frame. We note that the bℓ
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vector is defined relative to the “b” frame. Subsequent substitution of (2.80) and (2.60) yields

ℓ⃗tH =JT(bℓ)b f⃗H + b⃗tH (2.81)

=JT(bℓ)
(

J(bω⃗)b Mbvy + J(bω⃗)b MJ(bℓ)bω⃗ + b Mbv̇y +
b MJ(bℓ)b ˙⃗ω

)

+ b Ib ˙⃗ω + J(bω⃗)b Ibω⃗ + J(bvx)
b Mbvx. (2.82)

Using the distributive property of cross products JT(bℓ) can be distributed as

ℓ⃗tH =JT(bℓ)J(bω⃗)b Mbvy + JT(bℓ)J(bω⃗)b MJ(bℓ)bω⃗ + JT(bℓ)b Mbv̇y

+ JT(bℓ)b MJ(bℓ)b ˙⃗ω + b Ib ˙⃗ω + J(bω⃗)b Ibω⃗ + J(bvx)
b Mbvx. (2.83)

The last term, J(bvx)b Mbvx, can be defined as a function of bvy and bω⃗. Using the relationship (2.46)

the last term becomes

J(bvx)
b Mbvx =J(bvy + J(bℓ)bω⃗)b M(bvy + J(bℓ)bω⃗) (2.84)

=J(bvy + J(bℓ)bω⃗)(b Mbvy +
b MJ(bℓ)bω⃗) (2.85)

=(bvy + J(bℓ)bω⃗)× (b Mbvy +
b MJ(bℓ)bω⃗). (2.86)

We can expand this expression following the distributive property of the cross product over

addition, i.e. p1 × (p2 + p3) = (p1 × p2) + (p1 × p3). Note for all vectors p1, p2, p3, p4 ∈ IR3,

(p1 + p2)× (p3 + p4) =(p1 + p2)× p3 + (p1 + p2)× p4 (2.87)

=− p3 × (p1 + p2)− p4 × (p1 + p2) (2.88)

=− (p3 × p1)− (p3 × p2)− (p4 × p1)− (p4 × p2) (2.89)

=(p1 × p3) + (p2 × p3) + (p1 × p4) + (p2 × p4). (2.90)
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Thus the term J(bvx)b Mbvx becomes

(bvy + J(bℓ)bω⃗)× (b Mbvy +
b MJ(bℓ)bω⃗) =− (b Mbvy × bvy)− (b Mbvy × J(bℓ)bω⃗)

− (b MJ(bℓ)bω⃗× bvy)− (b MJ(bℓ)bω⃗× J(bℓ)bω⃗)
(2.91)

=J(bvy)
b Mbvy + J(J(bℓ)bω⃗)b Mbvy

+ J(bvy)
b MJ(bℓ)bω⃗ + J(J(bℓ)bω⃗)b MJ(bℓ)bω⃗). (2.92)

Thus the EOM for angular degrees of freedom can be expressed as a function of bvy and bω⃗ (and

their time derivatives) as

ℓ⃗tH =JT(bℓ)J(bω⃗)b Mbvy + JT(bℓ)J(bω⃗)b MJ(bℓ)bω⃗ + JT(bℓ)b Mbv̇y

+ JT(bℓ)b MJ(bℓ)b ˙⃗ω + b Ib ˙⃗ω + J(bω⃗)b Ibω⃗

+ J(bvy)
b Mbvy + J(J(bℓ)bω⃗)b Mbvy + J(bvy)

b MJ(bℓ)bω⃗

+ J(J(bℓ)bω⃗)b MJ(bℓ)bω⃗). (2.93)

The two terms JT(bℓ)J(bω⃗)b MJ(bℓ)bω⃗ and J(J(bℓ)bω⃗)b MJ(bℓ)bω⃗) can be combined using the

fact that cross products satisfy the Jacobi Identity (2.94). We find it more clear to manipulate the

Jacobi Identity first and then directly substitute these terms such that the result allows use of the

parallel axis theorem, specifically,

p1 × (p2 × p3) + p2 × (p3 × p1) + p3 × (p1 × p2) =0 ∀ p1, p2, p3 ∈ IR3 (2.94)

p1 × (p2 × p3)− p2 × (p1 × p3)− (p1 × p2)× p3 =0 (2.95)

−p1 × (p2 × p3) + (p1 × p2)× p3 =− p2 × (p1 × p3). (2.96)
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We directly substitute in the two terms JT(bℓ)J(bω⃗)b MJ(bℓ)bω⃗ and J(J(bℓ)bω⃗)b MJ(bℓ)bω⃗) noting

p1 = bℓ p2 = bω⃗ p3 = b MJ(bℓ)bω⃗

to yield

JT(bℓ)J(bω⃗)b MJ(bℓ)bω⃗ + J(J(bℓ)bω⃗)b MJ(bℓ)bω⃗) =− J(bω⃗)J(bℓ)b MJ(bℓ)bω⃗ (2.97)

=J(bω⃗)JT(bℓ)b MJ(bℓ)bω⃗. (2.98)

We substitute this result back into the EOM for angular degrees of freedom (2.83) to result in

ℓ⃗tH =JT(bℓ)J(bω⃗)b Mbvy + JT(bℓ)b Mbv̇y

+ JT(bℓ)b MJ(bℓ)b ˙⃗ω + b Ib ˙⃗ω + J(bω⃗)JT(bℓ)b MJ(bℓ)bω⃗ + J(bω⃗)b Ibω⃗

+ J(bvy)
b Mbvy + J(J(bℓ)bω⃗)b Mbvy + J(bvy)

b MJ(bℓ)bω⃗. (2.99)

The expression for the inertia matrix relative to the ”L” frame, ℓ I, was defined in (2.48). We

substitute in the general principal axis theorem (2.48) into (2.99) to yield

ℓ⃗tH =JT(bℓ)J(bω⃗)b Mbvy + JT(bℓ)b Mbv̇y

+ ℓ Ib ˙⃗ω + J(bω⃗)ℓ Ibω⃗

+ J(bvy)
b Mbvy + J(J(bℓ)bω⃗)b Mbvy + J(bvy)

b MJ(bℓ)bω⃗. (2.100)

The Jacobi Identity can be used again to combine the two terms JT(bℓ)J(bω⃗)b Mbvy and

J(J(bℓ)bω⃗)b Mbvy. Taking the same form as (2.96) we can substitute directly by

p1 = bℓ p2 = bω⃗ p3 = b Mbvy
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to yield

JT(bℓ)J(bω⃗)b Mbvy + J(J(bℓ)bω⃗)b Mbvy =− J(bω⃗)J(bℓ)b Mbvy (2.101)

=J(J(bℓ)b Mbvy)
bω⃗ (2.102)

We substitute this result back into the EOM for angular degrees of freedom (2.100) to yield

ℓ⃗tH =JT(bℓ)b Mbv̇y +
ℓ Ib ˙⃗ω + J(bω⃗)ℓ Ibω⃗ + J(bvy)

b Mbvy

+ J(bvy)
b MJ(bℓ)bω⃗ + J(J(bℓ)b Mbvy)

bω⃗. (2.103)

We combine equations (2.80) and (2.103) as

⏐⏐⏐⏐ℓ f⃗H
ℓ⃗tH

⏐⏐⏐⏐ = [ b M b MJ(bℓ)
JT(bℓ)b M ℓ I

] ⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐
+

[
03x3 JT(b Mbvy + b MJ(bℓ)bω⃗)

JT(b Mbvy + b MJ(bℓ)bω⃗) JT(ℓ Ibω⃗ + JT(bℓ)b Mbvy)

] ⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐ . (2.104)

We define the “added mass” matrix

ℓMA =

[ b M b MJ(bℓ)
JT(bℓ)b M ℓ I

]
(2.105)

and the “added mass” Coriolis matrix

ℓCA =

[
03x3 JT(b Mbvy + b MJ(bℓ)bω⃗)

JT(b Mbvy + b MJ(bℓ)bω⃗) JT(ℓ Ibω⃗ + JT(bℓ)b Mbvy)

]
. (2.106)

We note that ℓMA is symmetric and ℓCA is skew symmetric. We can write (2.104) as

⏐⏐⏐⏐ℓ f⃗H
ℓ⃗tH

⏐⏐⏐⏐ =ℓMA

⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐+ ℓCA

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐ . (2.107)

As in Section 2.4 we define the quadratic drag matrix ℓDQ(bvy, bω⃗) to be

ℓDQ(bvy, bω⃗) =
3

∑
i=1
|bvyi |

ℓDi +
3

∑
i=1
|bω⃗i|ℓDi. (2.108)
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Each negative semidefinite drag matrix for the ith degree of freedom (i = 1, 2, . . . 6) is defined as

ℓDi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ℓDi1,1
ℓDi1,2

ℓDi1,3
ℓDi1,4

ℓDi1,5
ℓDi1,6

ℓDi2,1
ℓDi2,2

ℓDi2,3
ℓDi2,4

ℓDi2,5
ℓDi2,6

ℓDi3,1
ℓDi3,2

ℓDi3,3
ℓDi3,4

ℓDi3,5
ℓDi3,6

ℓDi4,1
ℓDi4,2

ℓDi4,3
ℓDi4,4

ℓDi4,5
ℓDi4,6

ℓDi5,1
ℓDi5,2

ℓDi5,3
ℓDi5,4

ℓDi5,5
ℓDi5,6

ℓDi6,1
ℓDi6,2

ℓDi6,3
ℓDi6,4

ℓDi6,5
ℓDi6,6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.109)

The buoyancy term G (⃗a) is structurally different in the “L” frame. The buoyant force term

remains the same but the righting moment is different. Define ℓrcb to be the vector from the “L”

frame to the center of buoyancy and note bℓ is as before the vector from the center of gravity to the

“L” frame. Thus the righting moment is

ℓτb =J(ℓrcb)
b f⃗buoy − J(bℓ) b f⃗g (2.110)

=J(ℓrcb)
b
wR(⃗a) (−ρ▽)w g⃗− J(bℓ) b

wR(⃗a) (m)w g⃗. (2.111)

We can write all the hydrodynamic terms in the body “L” frame as

⏐⏐⏐⏐ℓ f⃗H
ℓ⃗tH

⏐⏐⏐⏐ = [ b M b MJ(bℓ)
JT(bℓ)b M ℓ I

] ⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐
+

[
03x3 JT(b Mbvy + b MJ(bℓ)bω⃗)

JT(b Mbvy + b MJ(bℓ)bω⃗) JT(ℓ Ibω⃗ + JT(bℓ)b Mbvy)

] ⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐ (2.112)

=− ℓDQ(bvy, bω⃗)

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐− ⏐⏐⏐⏐ b
wR(⃗a)(m− ρ▽)w g⃗

J(brcb)
b
wR(⃗a) (−ρ▽)w g⃗ + J(bℓ) b

wR(⃗a) (m)w g⃗

⏐⏐⏐⏐ . (2.113)

We define

ℓG (⃗a) =
⏐⏐⏐⏐ b

wR(⃗a)(m− ρ▽)w g⃗
J(ℓrcb)

b
wR(⃗a) (−ρ▽)w g⃗− J(bℓ) b

wR(⃗a) (m)w g⃗

⏐⏐⏐⏐ . (2.114)

Thus (2.113) is simplified to

0 =ℓMA

⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐+ ℓCA

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐+ ℓDQ(bvy, bω⃗)

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐+ ℓG (⃗a). (2.115)
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2.5 Rigid Body EOM

In general, the derivation of the EOM using rigid-body dynamics follows the derivation of the

hydrodynamic EOM in Section 2.3 and Section 2.4 with two differences.

First the body mass matrix, b MRB, is just a scalar mass multiplied by the identity mI3x3 (drop-

ping the w). From (2.24) and the inverse property of SO(3) we see

b MRB = b
wR(⃗a)w Mb

wRT (⃗a) = b
wR(⃗a)wmI3x3

b
wRT (⃗a) = mI3x3. (2.116)

This similarity extends to the EOM written in both the “b” and “L” frames where we note

ℓMRB = b MRB = mI3x3. (2.117)

The second difference is the replacement of hydrodynamic rotational inertia w I with the rigid

body inertia, w IRB. Both w I and w IRB are PDS, but unlike the added mass inertia ℓ I, closed form

expressions for w IRB exist for many simple geometric shapes.

For the rigid body dynamics we define the external applied forces and moments to be f⃗ and τ⃗

respectively. These forces are applied to the vehicle from thrusters or control surfaces which are

not already accounted for in the hydrodynamic derivation. For example, similar to (2.104), the

rigid body dynamics in the “L” frame is defined as

⏐⏐⏐⏐ℓ f⃗
ℓτ⃗

⏐⏐⏐⏐ = [
mI3x3 mI3x3 J(bℓ)

JT(bℓ)mI3x3
ℓ IRB

] ⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐
+

[
03x3 JT(mbvy + mJ(bℓ)bω⃗)

JT(mbvy + mJ(bℓ)bω⃗) JT(ℓ IRB
bω⃗ + JT(bℓ)mbvy)

] ⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐ . (2.118)

Note that the kernel of the term JT(mbvy) in the lower left entry in the Coriolis matrix in (2.118)

is the span(bvy). This term can be ignored, but is retained herein for clarity on the simplification

steps to follow.
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In a similar manner we define ℓMRB and ℓCRB to be the rigid body mass and inertia matrices

respectively. Therefore we can express the rigid body dynamics in the “L” frame as

⏐⏐⏐⏐ℓ f⃗
ℓτ⃗

⏐⏐⏐⏐ =ℓMRB

⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐+ ℓCRB

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐ . (2.119)

2.6 Complete 6-DOF EOM in the Body Fixed “L” Frame

As reported in [12] and [7], it is common to assume that the hydrodynamics and rigid-body

dynamics can be linearly superimposed to define the complete EOM of underwater vehicles. For

the derivation of EOM in the “L” frame we add together the dynamics defined in (2.115) and (2.119)

as

0 = ℓMA

⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐ +ℓCA

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐ +ℓDQ(bvy, bω⃗)

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐− ℓG (⃗a)

+
⏐⏐⏐⏐ℓ f⃗
ℓτ⃗

⏐⏐⏐⏐ = ℓMRB

⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐ +ℓCRB

⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐
We combine the mass matrices in (2.113) and (2.118) to yield

[ b M b MJ(bℓ)
JT(bℓ)b M ℓ I

]
+

[
mI3x3 mI3x3 J(bℓ)

JT(bℓ)mI3x3
ℓ IRB

]

=

[ b M + mI3x3 (b M + mI3x3)J(bℓ)
JT(bℓ)(b M + mI3x3)

ℓ I + ℓ IRB

]
. (2.120)

Taking b Mt = b M + mI3x3, ℓ It = ℓ I + ℓ IRB, and Mℓ =
b Mt J(bℓ) yields

[b Mt Mℓ

MT
ℓ

ℓ It

]
. (2.121)

The mass matrix is symmetric since MT
ℓ = JT(bℓ)(b Mt)T and (b Mt)T = b Mt are symmetric.
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The hydrodynamics and rigid body Coriolis matrices in (2.113) and (2.118) can be added

together as

[
03x3 JT(b Mbvy + b MJ(bℓ)bω⃗)

JT(b Mbvy + b MJ(bℓ)bω⃗) JT(ℓ Ibω⃗ + JT(bℓ)b Mbvy)

]

+

[
03x3 JT(mbvy + mJ(bℓ)bω⃗)

JT(mbvy + mJ(bℓ)bω⃗) JT(ℓ IRB
bω⃗ + JT(bℓ)mbvy)

]
. (2.122)

Again taking b Mt = b M + mI3x3, ℓ It = ℓ I + ℓ IRB, and Mℓ = b Mt J(bℓ) the expression for the

total Coriolis matrix is

[
03x3 JT(b Mt

bvy + Mℓ
bω⃗)

JT(b Mt
bvy + Mℓ

bω⃗) JT(ℓ It
bω⃗ + MT

ℓ
bvy)

]
. (2.123)

This formulation is skew symmetric and equivalent to (2.125) in [12]. Other parameterizations

where the Coriolis matrix is not skew symmetric are possible, however it is always possible to

assemble the Coriolis matrix such that Ṁ− C(v) is a skew symmetric matrix [38].

We combine all hydrodynamic and rigid body terms together to yield the following EOM for

6-DOF underwater vehicles:

⏐⏐⏐⏐ℓ f⃗
ℓτ⃗

⏐⏐⏐⏐ = [b Mt Mℓ

MT
ℓ

ℓ It

] ⏐⏐⏐⏐bv̇y
b ˙⃗ω

⏐⏐⏐⏐
+

[
03x3 JT(b Mt

bvy + Mℓ
bω⃗)

JT(b Mt
bvy + Mℓ

bω⃗) JT(ℓ It
bω⃗ + MT

ℓ
bvy)

] ⏐⏐⏐⏐bvy
bω⃗

⏐⏐⏐⏐+ ℓDQ(bvy, bω⃗)

[bvy
bω⃗

]
− ℓG (⃗a)

.

(2.124)

This formulation is consistent with that reported in [12].

2.6.1 Structural Observations of 6-DOF EOM

We can make a few structural observations. First in the definition above b Mt and ℓ It are both 3x3

matrices. The body-frame hydrodynamic added-mass matrix, b M, and the body-frame added-

inertia matrix, ℓ I, are not necessarily diagonal. For rigid bodies it is true that the mass matrix mI3×3

and inertia matrix ℓ IRB will be diagonal when the frame of reference is aligned along the principal
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axis. In fact, this basis for the “b” frame was chosen during the derivation of the rigid body EOM

with this simplicity in mind. However, if this frame of reference is chosen, then the hydrodynamic

added mass matrix b MA and inertial matrix ℓ I will not necessarily be diagonal. Both b MA and

ℓ I are considered real PDS and are therefore diagonalizable by real unitary matrices, or in other

worlds there is some similarity transform in using a member of SO(3) to a frame where each of the

hydrodynamic mass and inertia matrices are diagonal (it is not clear if such a frame exists where

they are both diagonal). However these two “principal” bases, one for the rigid body and the other

added mass, are most likely not the same for an underwater vehicles unless symmetry is present.

To state this explicitly, in the “b” basis frame:

1. b M = RMDMRT
M where DM is diagonal and RM ̸= I3x3

2. b I = RI DI RT
I where DI is diagonal and RI ̸= I3x3

3. b MRB = mI3x3

4. w IRB is diagonal

As a result, the combined mass and inertia matrices can only be considered real PDS because the

sum of a diagonal matrix with real positive entries and a PDS matrix is PDS.

Another observation can be found in the off diagonal terms of the combined mass matrix where

Mℓ =
b Mt J(bℓ). Clearly these blocks contain information about the vector bℓ which may be difficult

to measure in practice. However the dynamical model of a vehicle described in (2.124) can be

identified using methods reported in [28], [33], or [37], using the “L” frame to be some frame of

reference that is easy to measure. After the dynamical model is identified, the vector from the “L”

frame to the center of mass bℓ could be estimated from the off diagonal terms of the mass matrix.

The estimate may serve as a confirmation of the accuracy of the model. A similar approach may

make it possible to estimate the location of the pivot point of a ship, which has been shown to exist

[46], but which is also difficult to measure directly.

27



Yet another observation can be made in the off-diagonal blocks of the Coriolis matrix in 2.124.

In particular, the lower left off-diagonal block contains the term JT(b Mt
bvy). This term, when

multiplied by the corresponding portion of the body velocity vector bvy, results in non-zero Coriolis

forces in the angular degrees of freedom from only translational velocities. This is true even if the

reference frame is the “b” frame located at the COM (the vector ℓ = 0, and thus Mℓ =
b Mt J(bℓ) = 0).

At face value this seems incorrect given intuition about rigid-body dynamics. However, this is

correct, and is related to the assumptions about added mass. If and only if all the eigenvalues of

the PDS combined added-mass matrix b Mt are equal, then there will be no Coriolis forces in the

angular degrees of freedom as a result of this term. The proof is given as follows:

FACT: b Mt ∈ R3x3 is positive definite symmetric (PDS). JT(b Mt
bvy)bvy = 0⇔ all eigenvalues of

b Mt are equal.

PROOF:

• JT(b Mt
bvy)bvy = 0 ⇐ all eigenvalues of b Mt are equal.

b Mt is symmetric and is therefore diagonalizable by a real unitary matrix Rm as b Mt =

RT
mDmRm. By assumption Dm = sm I3x3, sm ∈ R+. Therefore

JT(b Mt
bvy)

bvy =

JT(RT
mDmRm

bvy)
bvy =

JT(RT
msm I3x3Rm

bvy)
bvy =

sm JT(RT
mRm

bvy)
bvy =

sm JT(I3x3
bvy)

bvy =

sm JT(bvy)
bvy = 0

28



• JT(b Mt
bvy)bvy = 0 ⇒ all eigenvalues of b Mt are equal.

Again b Mt is symmetric and is therefore diagonalizable by a real unitary matrix Rm as

b Mt = RT
mDmRm and Rm

b MtRT
m = Dm. All the eigenvalues λ1, λ2, λ3 of b Mt are the diagonal

entries of the diagonal matrix Dm. By definition of unitary matrices RT
mRm = I3x3

JT(b Mt
bvy)

bvy = 0

J(bvy)
b Mt

bvy = 0 (anticommutative property of cross products)

RT
mRm J(bvy)

b Mt
bvy = 0

RT
m J(Rm

bvy)Rm
b Mt

bvy = 0 (disributive property of cross products 2.16)

RT
m J(Rm

bvy)Rm
b MtRT

mRm
bvy = 0

RT
m J(Rm

bvy)DmRm
bvy = 0

RT
m J(mvy)Dm

mvy = 0 (without loss of generality mvy = Rm
bvy )

|RT
m J(mvy)Dm

mvy|2 = |0|2 | ∗ |2 denotes the l2 norm.

mvT
y DT

m JT(mvy)RmRT
m J(mvy)Dm

mvy = 0

mvT
y DT

m JT(mvy)J(mvy)Dm
mvy = 0

|J(mvy)Dm
mvy|2 = 0.

We use the definition of the geometric magnitude of cross product, |a× b|2 = |a|2 |b|2 |sin(θ)|

where θ is the angle between vectors a and b. Then

|mvy|2 |Dm
mvy|2 |sin(θm)| = 0.
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Ignore the trivial solution mvy = 0. All the eigenvalues of b Mt are positive and nonzero

because b Mt is PDS. Thus all diagonal entries in Dm (λ1, λ2, λ3) are positive and Dm ̸= 03x3.

As a consequence |sin(θm)| = 0. By definition of the sin function, the angle θm between

vectors mvy and Dm
mvy is equal to 0 or π (or nπ). Using geometric reasoning, θm = 0 or

π implies the Dm
mvy ∥ mvy. Thus matrix Dm only scales the magnitude of the vector mvy

and does not change the orientation. Therefore λ1 = λ2 = λ3 = sm and Dm
mvy ∥ mvy =

sm I3x3
mvy ∥ mvy = sm

mvy ∥ mvy. → Dm = sm I3x3, and since b Mt is PDS sm ∈ R+

The same results directly follow for rigid body motion where b Mt = mI3x3. This is mentioned

in the commentary after (2.118).

In general, all the eigenvalues of the combined added-mass matrix b Mt are not assumed to

be equal. Unequal eigenvalues are expected if the vehicle does not exhibit the same added mass

properties about all three cardinal planes. In the case of torpedo shaped vehicle, the same added

mass properties can be expected about two planes (in the sway and heave degrees of freedom), but

not all three.

2.7 Complete 3-DOF EOM in the Body Fixed “L” Frame

The 6-DOF equations reported in (2.124) can be pared down to 3-DOF equations by eliminating

the degrees of freedom that are not considered. Here we consider the structure of b M and ℓ I in the

common 3-DOF class of vehicles with two translational degrees of freedom often referred to as

surge and sway and one rotational degree of freedom often known as yaw or heading.

To observe some structure in the 6-DOF EOM we define b Mt and ℓ I from (2.124) as

b Mt =

⎡⎣bm11
bm12

bm13
bm12

bm22
bm23

bm13
bm23

bm33

⎤⎦ (2.125)

ℓ I =

⎡⎣i11 i12 i13
i12 i22 i23
i13 i23 i33

⎤⎦ . (2.126)
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The vector from the body “b” frame to the “L” frame, bℓ, only exists in one plane in this 3-

DOF model. As an aside, if the “L” frame is to be considered to be the center of pressure (using

naval architecture terminology) and the vehicle exhibits port-starboard symmetry then ℓy will be

approximately equal to 0. However, for this 3-DOF configuration we consider

bℓ =

⏐⏐⏐⏐⏐⏐
ℓx
ℓy
0

⏐⏐⏐⏐⏐⏐ . (2.127)

Thus Mℓ =
b Mt J(bℓ) can be expressed as

Mℓ =

⎡⎣bm11
bm12

bm13
bm12

bm22
bm23

bm13
bm23

bm33

⎤⎦⎡⎣ 0 0 ℓy
0 0 −ℓx
−ℓy ℓx 0

⎤⎦ (2.128)

=

⎡⎣−bm13ℓy
bm13ℓx (bm11ℓy − bm12ℓx)

−bm23ℓy
bm23ℓx (bm12ℓy − bm22ℓx)

−bm33ℓy
bm33ℓx (bm13ℓy − bm23ℓx)

⎤⎦ . (2.129)

For simplicity we define the plant velocities as

bvy =

⏐⏐⏐⏐⏐⏐
v1
v2
v3

⏐⏐⏐⏐⏐⏐ and bω =

⏐⏐⏐⏐⏐⏐
v4
v5
v6

⏐⏐⏐⏐⏐⏐ . (2.130)
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The entire 6x6 mass matrix can be assembled and we can partition it from this 6-DOF mass

matrix expression

[b Mt Mℓ

MT
ℓ

ℓ It

]
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

v̇1
v̇2
0
0
0
v̇6

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(2.131)

to this 3-DOF mass matrix expression⎡⎣ bm11
bm12 (bm11ℓy − bm12ℓx)

bm12
bm22 (bm12ℓy − bm22ℓx)

(bm11ℓy − bm12ℓx) (bm12ℓy − bm22ℓx) i33

⎤⎦ ⏐⏐⏐⏐⏐⏐
v̇1
v̇2
v̇6

⏐⏐⏐⏐⏐⏐ . (2.132)

To simply further, we can define b Mt and bℓ3DOF as

b Mt =

[bm11
bm12

bm12
bm22

]
(2.133)

bℓ3DOF =

⏐⏐⏐⏐ℓx
ℓy

⏐⏐⏐⏐ . (2.134)

Also we define the mapping J2 : IR ↦→ SK(2) ∈ IR2x2 as

J2(c) =
[

0 −c
c 0

]
. (2.135)

Using the definitions (2.133), (2.134) and (2.135) we can define b Mℓ as

b Mℓ =
b Mt JT

2 (1)
bℓ3DOF

=

[bm11
bm12

bm12
bm22

] [
0 1
−1 0

] ⏐⏐⏐⏐ℓx
ℓy

⏐⏐⏐⏐ . (2.136)

Thus the 3-DOF mass matrix in (2.132) can be rewritten as

[ b Mt
b Mℓ

b MT
ℓ I33

]
. (2.137)

The same process can be repeated for the Coriolis matrix. The only blocks of the 6-DOF Coriolis

matrix that contribute to the 3-DOF model are the off diagonal blocks. This is obvious upon
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examination of the structure present in the 6-DOF model which has the form⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 C15 −C16
0 0 0 −C15 0 C26
0 0 0 C16 −C26 0
0 C15 −C16 0 C45 −C46
−C15 0 C26 −C45 0 C56
C16 −C26 0 C46 −C56 0

⎤⎥⎥⎥⎥⎥⎥⎦

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

v1
v2
0
0
0
v6

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
. (2.138)

We use the definitions (2.125) and (2.134) and the terms in the off-diagonal blocks of the 6-DOF

Coriolis matrix, JT(b Mt
bvy + Mℓ2

bω⃗), can be written out as

b Mt
bvy =

⎡⎣bm11
bm12

bm13
bm12

bm22
bm23

bm13
bm23

bm33

⎤⎦ ⏐⏐⏐⏐⏐⏐
v1
v2
0

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
bm11v1 +

bm12v2
bm12v1 +

bm22v2
bm13v1 +

bm23v2

⏐⏐⏐⏐⏐⏐ (2.139)

Mℓ
bω⃗ =

⎡⎣−bm13ℓy
bm13ℓx (bm11ℓy − bm12ℓx)

−bm23ℓy
bm23ℓx (bm12ℓy − bm22ℓx)

−bm33ℓy
bm33ℓx (bm13ℓy − bm23ℓx)

⎤⎦ ⏐⏐⏐⏐⏐⏐
0
0
v6

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
(bm11ℓy − bm12ℓx)v6
(bm12ℓy − bm22ℓx)v6
(bm13ℓy − bm23ℓx)v6

⏐⏐⏐⏐⏐⏐ . (2.140)

Upon inspection of (2.138) only the terms in the e1 and e2 basis vector position will enter into this

3-DOF formulation, thus the 1,3 and 2,3 entries in the 3-DOF Coriolis matrix are

[
−bm12v1 − bm22v2 − (bm12ℓy − bm22ℓx)v6
bm11v11 + bm12v2 + (bm11ℓy − bm12ℓx)v6

]
. (2.141)

This can be shown to be equivalent to

[
0 −1
1 0

] [bm11
bm12

bm12
bm22

] ⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐+ [
0 −1
1 0

] [bm11
bm12

bm12
bm22

] [
0 1
−1 0

] ⏐⏐⏐⏐ℓx
ℓy

⏐⏐⏐⏐ v6. (2.142)

We use the definition of b Mt in (2.133) and b Mℓ in (2.136) and the mapping (2.135) to simplify the

1,3 and 2,3 entries in the 3-DOF Coriolis matrix to

J2(1)b Mt

⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐+ J2(v6)
b Mℓ. (2.143)
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The 3,1 and 3,2 entries in the 3-DOF Coriolis matrix are the negative transpose of the 1,3 and

2,3 entries defined in (2.143), and thus

−
[

J2(1)b Mt

⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐+ J2(v6)
b Mℓ

]T

=
⏐⏐v1 v2

⏐⏐ b Mt J2(1) + b MT
ℓ J2(v6). (2.144)

The 3-DOF Coriolis matrix (and the 3-DOF velocity vector) can be assembled using (2.143) and

(2.144) to match the Coriolis matrix in [33] as⎡⎣ 02x2 J2(1)b Mt

⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐+ J2(v6)
b Mℓ⏐⏐v1 v2

⏐⏐ b Mt J2(1) + b MT
ℓ J2(v6) 0

⎤⎦ ⏐⏐⏐⏐⏐⏐
v1
v2
v6

⏐⏐⏐⏐⏐⏐. (2.145)

This formulation of the Coriolis is still skew symmetric. Another equivalent way to express the

3-DOF Coriolis matrix (and the 3-DOF velocity vector) is to rearrange the terms as⎡⎣ J2(v6)
b Mt J2(v6)

b Mℓ⏐⏐v1 v2
⏐⏐ b Mt J2(1) b MT

ℓ J2(1)
⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐
⎤⎦ ⏐⏐⏐⏐⏐⏐

v1
v2
v6

⏐⏐⏐⏐⏐⏐ . (2.146)

Here the 3,3 entry is a scalar and therefore it is equivalent to its transpose

[
b MT

ℓ J2(1)
⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐ ]T

=
⏐⏐v1 v2

⏐⏐ J2(−1)b Mℓ. (2.147)

Therefore another equivalent formulation of the Coriolis matrix (and the 3-DOF velocity vector) is

[
J2(v6)

b Mt J2(v6)
b Mℓ⏐⏐v1 v2

⏐⏐ b Mt J2(1)
⏐⏐v1 v2

⏐⏐ J2(−1)b Mℓ

] ⏐⏐⏐⏐⏐⏐
v1
v2
v6

⏐⏐⏐⏐⏐⏐ . (2.148)

The Coriolis matrix can be parameterized and organized many different ways. This is because

the Coriolis term, which includes both the Coriolis matrix and the velocity vector, is inherently a

vector-valued function. However, it is always possible to assemble the Coriolis matrix such that

Ṁ− C(v) is a skew symmetric matrix [38]. In a similar manner we can pare down the drag matrix

ℓDQ(v1, v2, v6) to be

ℓDQ(v1, v2, v6) = |v1|D1 + |v2|D2 + |v6|D6. (2.149)
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Each PDS drag matrix for the ith degree of freedom (i = 1, 2, 6) is defined as

ℓDi =

⎡⎣ℓDi1,1
ℓDi1,2

ℓDi1,3
ℓDi2,1

ℓDi2,2
ℓDi2,3

ℓDi3,1
ℓDi3,2

ℓDi3,3

⎤⎦ . (2.150)
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In conclusion, the dynamical EOM of a 3-DOF underwater vehicle with degrees of freedom in

surge, sway, and yaw are⏐⏐⏐⏐⏐⏐
ℓ f1
ℓ f2
ℓτ6

⏐⏐⏐⏐⏐⏐ =
[ b Mt

b Mℓ
b MT

ℓ I33

] ⏐⏐⏐⏐⏐⏐
v̇1
v̇2
v̇6

⏐⏐⏐⏐⏐⏐
+

⎡⎣ 02x2 J2(1)b Mt

⏐⏐⏐⏐v1
v2

⏐⏐⏐⏐+ J2(v6)
b Mℓ⏐⏐v1 v2

⏐⏐ b Mt J2(1) + b MT
ℓ J2(v6) 0

⎤⎦ ⏐⏐⏐⏐⏐⏐
v1
v2
v6

⏐⏐⏐⏐⏐⏐
+ ℓDQ(v1, v2, v3)

⏐⏐⏐⏐⏐⏐
v1
v2
v6

⏐⏐⏐⏐⏐⏐ .

(2.151)

This is equivalent to⏐⏐⏐⏐⏐⏐
ℓ f1
ℓ f2
ℓτ6

⏐⏐⏐⏐⏐⏐ =
[ b Mt

b Mℓ
b MT

ℓ I33

] ⏐⏐⏐⏐⏐⏐
v̇1
v̇2
v̇6

⏐⏐⏐⏐⏐⏐+
[

J2(v6)
b Mt J2(v6)

b Mℓ⏐⏐v1 v2
⏐⏐ b Mt J2(1)

⏐⏐v1 v2
⏐⏐ J2(−1)b Mℓ

] ⏐⏐⏐⏐⏐⏐
v1
v2
v6

⏐⏐⏐⏐⏐⏐
+ ℓDQ(v1, v2, v3)

⏐⏐⏐⏐⏐⏐
v1
v2
v6

⏐⏐⏐⏐⏐⏐ .

(2.152)

Buoyant forces do not enter into this particular 3-DOF formulation, but some authors [33]

include additional bias terms to account for unmodeled thruster dynamics, and other unmodeled

dynamics such as cable tethers.
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Chapter 3

Adaptive Identification of Plant and
Actuation Parameters of
Underactuated UUVs

3.1 Introduction

This chapter reports a novel adaptive identification algorithm for the estimation of parameters

for unmanned underwater vehicles (UUVs) underwater vehicle plant dynamical models from

experimental data in which a fully-submerged UUV performs dynamic maneuvers. This adaptive

identifier (AID) approach is inspired by the AID approach originally reported in McFarland and

Whitcomb [36], for the case of fully-actuated UUVs. Specifically, Chapter 3 reports the following

new results:

1. A preliminary proof of an extension of [36] to identify both actuation parameters and plant

parameters for six degree of freedom (6-DOF) UUVs simultaneously.

2. A preliminary simulation study that indicates that the AID in [36] can be extended to under-

actuated three degree of freedom (3-DOF) UUVs.

3. AID algorithm and proof of an extension of [36] for 6-DOF UUV plants with diagonal mass

and drag matrices.

The remainder of this chapter is organized as follows: Section 3.2 provides a review of literature
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on parameter identification of UUVs. Section 3.3 reports a proof of the extension of [36] for

underactuated 3-DOF UUV plants of the form addressed in [32]. Subsections 3.3.2.1 and 3.3.2.2

report the results of numerical simulations for both fully actuated and underactuated 3-DOF UUVs.

Section 3.4 reports a proof of an extension of [36] to estimate actuation parameters of 6-DOF UUVs

simultaneously. Section 3.4.3 reports a proof of an extension of [36] to 6-DOF UUV plants with

diagonal mass and drag matrices.

3.2 Literature Review

Several methods for the experimental identification of dynamical plant parameters for UUVs

have been reported. They broadly fall into one of the following categories: least squares linear

regression, adaptive estimation, Kalman filter variants, and machine learning (ML) or neural

net (NN) techniques.

• Least Squares

Hegrenaes et al. in [18] describes a constrained least squares method for 3-DOF parameter

identification of the "HUGIN 4500" UUV during sea trials in the Oslo-fjord, Norway. The

approach identifies the control surface parameters as defined in [41] and the model parameter

simultaneously. A cross validation with experimental results is reported.

Martin and Whitcomb in [29] report experimental identification and validation of a 6-DOF

model of the fully actuated Johns Hopkins University (JHU) remotely operated vehicle

(ROV) using both total least squares and ordinary least squares. They report a comparative

experimental evaluation of several candidate plant models and conclude that the fully

coupled quadratic drag model perform better than corresponding decoupled drag models

for this class of underwater vehicles.

Experimental parameter identification for underactuated gliders are reported by Graver et

al. in [15] The authors only report methods for estimating parameters that are observable in

steady glide which eliminates the need for body accelerations.
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Ridao et al. in [42] compares identification of a fully actuated decoupled 3-DOF model

parameters for the “URIS UU” vehicle using least squares and a second method which

involves numerical integration to avoid derivatives of body velocity signals which can be

difficult to obtain in experiments. Appendix A reports a result that indicates that with a

sufficiently small dt these two methods are actually equivalent and are therefore subject to

the same noise and numerical inaccuracies.

Naterajan et al. in [40] reports offline experimental parameter identification of the under-

acutated 6-DOF “DAGON” UUV by first identifying the thruster model parameters, then

identifying the vehicle drag and mass parameters.

• Adaptive Estimation

An approach to adaptive identification of UUV plant parameters was first reported by Small-

wood and Whitcomb in [48] for fully-actuated multi-degree of freedom UUVs, but is limited

to fully diagonal plant models in which the dynamics of each degree of freedom is fully

decoupled and independent from the dynamics of other degrees of freedom. McFarland and

Whitcomb in [36] report an AID for fully coupled, fully actuated 6-DOF UUVs. Neither AID

requires body acceleration signals. Both provide Lyapunov stability proofs and experimental

results for the fully actuated JHU ROV are compared with those found using ordinary least

squares. These adaptive estimation techniques require knowledge of thruster dynamics and

involve tuning adaptation gains for best performance.
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• Kalman Filters

The authors in [49] report an EKF estimation of 1 DOF dynamics of an underactuated, torpedo

shaped body using experimental data.

In [43] Sabet et al. identify some dynamical model parameters of a 6-DOF torpedo shaped

UUV in simulation using Cubature and Transformed Unscented Kalman Filters. Performance

is compared with previously reported Extended Kalman Filters which are limited by lin-

earization of the nonlinear dynamical system. The authors estimate control input coefficients

for the control surfaces as formulated in [41] but assume the thrust coefficient and mass terms

are known.

• Machine Learning (ML) and Neural Net (NN) Methods

In [55] Wehbe et al. reports a study of several machine learning (ML) methods for identifying

the decoupled drag in in the Sway and Yaw DOF of the “Leng” torpedo shaped UUV. They

conclude that kernel based nonlinear estimators (SVR, KRR, GPR) yield better estimations for

hydrodynamic damping terms of underwater vehicles than neural net (NN) or least square

estimations. However, the prohibitively long computational time required to complete the

ML and NN estimates.

Another study [54] reports the use of NN in drag parameter identification of UUVs. The

authors in [54] report the method to be robust to noise and to be able to correctly identify time

varying drag parameters with online learning. The authors report a numerical simulation

study but no experimental evaluation.

In [56] Wu et al. report a symbolic regression method for UUV parameters based on genetic

algorithms and genetic programming. Using simulated 6-DOF data, the authors compare

identification using a symbolic regression and Levenberg-Marquardt least squares.

Online reinforcement learning is proposed by Karras et al. in [26] to identify the parameters
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of an underactuated UUV. The method is derivative-free, and four degree of freedom (x, y, z,

heading) experimental results are reported.

All ML/NN approaches reviewed assume knowledge of thruster and control surface models.

In addition, significant computational time and training data is needed to complete estimates

using ML and NN methods.

3.3 Adaptive Identification of 3-DOF UUV Plant Parameters

3.3.1 Problem Statements

The equations of motion (EOM) for fully coupled, 3-DOF (surge, sway, and heading) UUVs are

reported in Chapter 2.7. They have the form

τ = u(t) = Mv̇ + C(M, v)v− D(v)v + ba, (3.1)

where τ = u(t) ∈ IR3 is the vector of forces (in surge and sway) and moments (in heading) acting

on the body. τ = [ f1; f2; t6]. v ∈ IR3 is the body velocity (the velocity of the body projected

into the body coordinate frame). v = [v1; v2; v6]. v̇ ∈ IR3 is the derivative of the body velocity.

v̇ = [v̇1; v̇2; v̇6]. The mass matrix M, Coriolis matrix C(M, v), and the quadratic drag matrix D(v)

are defined in Chapter 2. This formulation assumes all drag matrices are negative semi-definite

and thus a minus sign appears in (3.1). Some authors such as in [33] will define the drag matrix

as positive definite and change the sign accordingly . In either case, the drag term must result in

damping, or the dissipation of energy of the system.

The term ba ∈ IR3 is the sum of buoyancy and bias terms. Entries of the bias term ba can be

parameterized as

ba =

⏐⏐⏐⏐⏐⏐
b1
b2
b6

⏐⏐⏐⏐⏐⏐ . (3.2)

Some entries in the ba vector can be neglected in some conditions, but all entries are considered
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herein. Buoyant forces are not present in this particular 3-DOF arrangement, but vehicle configu-

rations and thrusters often have bias. One example of this is reported in [33] where the authors

report a non-zero bias they conclude is related t the forces from a tether.

3.3.2 AID Extension to 3-DOF UUV Plants

In [36] McFarland and Whitcomb report a new AID for fully actuated 6-DOF UUVs. This AID

approach is adapted and extended herein to estimate parameters of a 3-DOF UUV. The remainder

of this section reports these extensions in bold.

• Plant:

τ = Mv̇ + C(M, v)v− D(v)v+ba (3.3)

• Task: Design parameter update laws for ˙̂v, M̂, D̂i, and b̂a such that limt→∞ ∆v(t) = 0⃗,

limt→∞
˙̂M(t) = 0⃗, limt→∞

˙̂Di(t) = 0⃗, and limt→∞
˙̂ba(t) = 0⃗. Additionally, design the pa-

rameter updates laws such that signals are bounded.

• Error Coordinates:

■ ∆v(t) = v̂(t)− v(t)

■ ∆M(t) = M̂(t)−M

■ ∆Di(t) = D̂i(t)− Di

■ ∆ba(t) = b̂a(t)− ba
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• Parameter Update Laws (removing the explicit notation for time dependence):

˙̂v = M̂−1
(
− C(M̂, v)v + D(v)v− ba + τ

)
+ α∆v (3.4)

˙̂M =
γ1

2
(ψ1vT + vψT

1 + ∆vψT
2 + ψ2∆vT) (3.5)

˙̂Di = −γ2|vi|∆vT (3.6)

˙̂ba= γ3∆v (3.7)

Where

■ ψ1 = adSE(2)(v)T∆v

■ The adjoint operator adSE(2) is defined as

adSE(2)(v) =

⎡⎣ 0 −v6 0
v6 0 0
−v2 v1 0

⎤⎦ (3.8)

■ ψ2 = ˙̂v + α∆v

■ Adaptation gains α, γ1, γ2, γ3 ∈ IR+

■ M̂(t0) is positive definite symmetric (PDS)

■ v̂(t0) = v(t0)

■ ∃ ϵ ∈ IR+ such that T (t0)
1/2 + ϵ ≤ λ3 where

T (t0) =||∆M(t0)||2F +
γ1

γ2

3

∑
i=1
||∆Di(t0)||2F (3.9)

+ γ1
γ3
||∆ba(t0)||2

• System and Stability Proof:

A proof for convergence of estimates ˙̂v, M̂, and D̂i, i = 1, 2, 3, to true plant values is reported

in [36]. We provide one additional term in the Lyapunov function to show convergence of
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the bias term estimate b̂a to the true bias term ba. Consider the Lyapunov candidate function

V(t) =
1
2

∆vT M∆v +
1

2γ1
tr(∆M ∆MT) (3.10)

+
1

2γ2

3

∑
i=1

tr(∆Di ∆DT
i )+

1
2γ3

∆bT
a ∆ba.

. In a procedure similar to methods reported in [36], we develop the following velocity error

dynamics expression

M∆̇v =M( ˙̂v− v̇)

=αM∆v− ∆Mψ2 − ad(v)∆Mv (3.11)

+

( 6

∑
i=1
|vi|∆Di

)
v−∆ba.

The Lyapunov function candidate (3.10) is:

■ positive definite

■ radially unbounded

■ equal zero if and only if ∆v = 0⃗, ∆M = 03x3, ∆Di = 03x3∀i, and ∆ba = 0⃗.

The time derivative of (3.10) is

V̇(t) =
1
2

(
∆̇vT M∆v + ∆vT M∆̇v

)
+

1
γ1

tr(∆M ˙∆MT
) +

1
γ2

3

∑
i=1

tr(∆Di ˙∆Di
T
) (3.12)

+ 1
γ3

∆̇b
T
a ∆ba.

We first substitute in (3.11) and the parameter updates laws (3.4)-(3.6). The result is

V̇(t) =− α∆vT M∆v− 1
2 ∆vT ∆ba − 1

2 ∆bT
a ∆v + 1

γ3
˙∆ba

T
∆ba (3.13)

=− α∆vT M∆v−∆vT ∆ba +
1

γ3
∆̇b

T
a ∆ba. (3.14)
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And finally we substitute the parameter update law (3.7) to yield

V̇(t) =− α∆vT M∆v. (3.15)

As reported in [36], this expression is negative definite in ∆v and negative semidefinite in the

error coordinates ∆v, ∆M, ∆Di, and ∆ba.

We note from [36] that with v, ∆v, ∆M, ∆Di, and ∆ba bounded and M, Di, and ba constant,

it is implied that v̂, M̂, D̂i, and b̂a are bounded. Additionally it can be shown that M−1 is

bounded using the same approach as that in [36] and thus ∆̇v is bounded. Additionally

∆v ∈ L2 and bounded ∆̇v implies that limt→∞ ∆v = 0⃗

Since the parameter update equation (3.30) is bounded and limt→∞ ∆v = 0⃗ this implies that

limt→∞
˙̂M = 0⃗, limt→∞

˙̂Di = 0⃗ ∀i, and limt→∞
˙̂ba = 0⃗. We conclude the estimator’s angular

and linear velocities asymptotically converge to the velocities of the actual vehicle and the

estimated parameters converge to the constant values.

3.3.2.1 AID Results in Simulation Studies of Fully Actuated 3-DOF UUVs

Studies of a simulated UUV plant were conducted, and the “true” parameters were chosen to

match those of the JHU ROV that were experimentally identified in [32]. In a similar manner as

the methods reported in [32], open loop control input was used to excite all 3 DOF in simulation.

Specifically, the control input was⏐⏐⏐⏐⏐⏐
f1
f2
τ6

⏐⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐

10 ∗ sin(0.25 ∗ t) (N)
50 ∗ sin(0.35 ∗ t) (N)

200 ∗ sin(0.3 ∗ t) (N −m)

⏐⏐⏐⏐⏐⏐ . (3.16)

Vehicle parameters were identified using both the AID method and Ordinary Least Squares

(OLS) for comparison. White Gaussian noise was added to both the body velocity and the time

derivative body velocity in an effort to mimic expected experimental sensor noise. The specific

noise characteristics are provided in Table 3.1.

Thirty minutes of plant excitation was simulated for the identification process. One could
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Table 3.1: Standard Deviation σ of Added Noise

Signal σ Signal σ
v1(t) v̇1(t)
v2(t) 0.01 m

s v̇2(t) 0.1 m
s2

v6(t) v̇6(t)

optimize the choice of control inputs to increase excitation, thereby reducing the simulation time

required to identify parameters. However, such an effort was outside of the scope of this study.

The set of adaptation gains used in simulation studies was:

a = 2.5 (3.17)

γ1 = 950 (3.18)

γ2 = 1200 (3.19)

γ3 = 8.5 (3.20)

After the adaptive identification process was complete, another simulation was completed to

validate the accuracy of the identified parameters. In the validation simulation the UUV plant

with the identified parameter set was subjected to the same initial condition and control signal.

The accuracy of the identified model was reported as the mean absolute error (MAE) between the

velocities of the simulated plant with the true parameters and the velocities of the simulated plant

with the identified parameters.

The results are shown in Figure 3.1. The forward simulation with the true parameter values is

noted as “v_true”, the simulation with the OLS identified parameters is noted as “v_ls” and the

simulation with the adaptively identified parameters is noted as “v_ad”. Figure 3.1 shows just over

200 seconds of a 30-minute simulation. 100 simulation runs were completed to provide statistically

significant results. The random noise added to each signal as reported in Table 3.1 was different
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Figure 3.1: Simulation of the fully actuated, JHU ROV in three degrees of freedom with measurement noise

for each simulation run, but all simulation runs used the same adaptive gains. The mean absolute

errors were then averaged over all 100 simulation runs.

The MAE of the simulated, fully actuated 3-DOF UUV plant using identified parameters from

both AID and OLS methods was summarized in Table 3.2. The MAE in velocities of the simulated

UUV with the adaptively identified parameters was lower than the MAE of the simulated UUV

with the parameters identified using OLS.
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Table 3.2: Mean Absolute Error of Simulated, Fully Actuated 3-DOF UUV Plant Using Identified Parameters

DOF AD ID PLANT LS ID PLANT
v1 0.016 m/s 0.076 m/s
v2 0.015 m/s 0.066 m/s
v6 0.010 rad/s 0.048 rad/s

Table 3.3: Mean Absolute Error of Simulated, Underactuated 3-DOF UUV Plant Using Identified Parameters

DOF AD ID PLANT LS ID PLANT
v1 0.016 m/s 0.059 m/s
v2 0.012 m/s 0.062 m/s
v6 0.011 rad/s 0.030 rad/s

3.3.2.2 AID Results in Simulated, Underactuated, 3-DOF UUV

The 3-DOF UUV simulation was repeated but using a simple underactuated plant model in which

surge and yaw are actuated, but the sway (lateral) degree of freedom has no direct control authority,

i.e. f2 = 0. As with the fully actuated UUV, the parameters of the underactuated UUV plant

were estimated using both the AID and least squares. The same adaptive gains (3.17)-(3.20) were

used, although further optimization is possible. The same validation process was performed by

simulating the identified model of the underactuated UUV subject to the same initial state and

control inputs. The results are shown in Figure 3.2.

As before 100 simulation runs of the underactuated UUV were completed to get statistically

significant results. Each simulation had different random noise which is characterized in Table

3.1. The MAE of the simulated, underactuated 3-DOF UUV plant using identified parameters

from both AID and least squares methods was summarized in Table 3.3. As reported for the fully

actuated UUV, the adaptively identified underactuated UUV plant was found to have a lower

MAE than the UUV plant identified using OLS in simulation studies.
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Figure 3.2: Simulation of the underactuated, JHU ROV in three degrees of freedom with measurement noise

Figure 3.3 provides a plot of the value of the Lyapunov function V(t) during one simulation run

of the fully actuated UUV and one simulation run of the underactuated UUV. As seen in Figure

3.3, VUA(t) does not decrease as fast as VFA(t). This was expected as the simulated motion in the

v2 direction for this underactuated plant is not as large as the simulated motion of fully actuated

plant. As a consequence, there is less persistent excitation in the sway v2 degree of freedom, and

more time is required for the parameter estimates to converge to the “true” values.
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Figure 3.3: Evaluation of the Lyapunov function in simulation of both a fully actuated (VFA) and under
actuated (VUA) 3-DOF UUV

Additionally, although it may appear that limt→∞ VUA(t) ̸= 0, or that VUA(t) is bounded below

by some positive non-zero number, it was confirmed that if the simulation is run to 4e5 seconds

(530 days) the value of VUA(t) decreases to less than 0.5 kg m2/s2. Obviously this length of time is

unreasonable and the control and adaptive gains could be better optimized, but the result of this

experiment suggests that the estimated parameters of underactuated vehicles eventually converge

to the true values in simulation.

3.3.3 Discussion

These results indicate that the AID for fully actuated 6-DOF UUVs reported in [36] can be used

for adaptive identification of underactuated 3-DOF UUV plant parameters. In both cases the UUV

plant using AID parameters performed better in simulation than the the UUV plant using the

parameters identified using OLS methods. This was likely because Gaussian noise was added to

the derivative of the body velocity, a signal that the AID estimates, but the OLS uses directly. As

with any adaptive identifier, parameter convergence requires persistent excitation in all degrees of

freedom [39], but these results demonstrate that control authority in all degrees of freedom is not

required to achieve parameter convergence. The inherent coupling of motion between degrees of

freedom can be sufficient to meet this persistent excitation criteria.
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3.4 Adaptive Identification of Plant and Actuation Parameters
for 6-DOF UUVs

3.4.1 Problem Statements

The following section presents an extension of the AID reported in [36] that simultaneously

adaptively identifies both plant and control vector parameters of fully coupled 6-DOF UUVs. This

result may be extended to underactuated UUVs as a logical consequence of the simulation study

in Section 3.3.

The control actuators or actuation available for many UUVs is often modeled as a function of

one or more unknown parameters, such as propeller coefficients and lift and drag coefficients of

control surfaces, which we will refer to as actuation parameters, and known signals such as angular

velocity of propellers, position of control surfaces, and velocity of vehicle relative to the water.

Control of a UUV is traditionally achieved using some combination of thrusters and actuated

control surfaces, but control of UUVs using bio-inspired methods is demonstrated in [44], [27],

[20], and [6]. Regardless of the specific method of actuation, the control actuation available to most

UUVs can be modeled as a function of unknown actuation parameters and known plant states and

known control signals.

Although the structures of many of these control functions are well studied and experimentally

verified in the literature [41], the actuation parameters must be determined experimentally for

each UUV. The following parameter identification method is applicable to a wide range of fully

actuated and underactuated UUVs of the form

Mv̇ = −C(v)v− D(v)v− G (⃗a) + τ(v, a⃗, ξ), (3.21)

where v ∈ IR6 is a vector containing the linear and angular body velocity as defined in Chapter 2,

v = [v1; v2; v3; v4; v5; v6]. For convenience we also define the body linear velocity ν = [v1; v2; v3] ∈

IR3 and the body angular velocity ω = [v4; v5; v6] ∈ IR3. v̇ ∈ IR6 is the derivative of body velocity,

v̇ = [v̇1; v̇2; v̇3; v̇4; v̇5; v̇6]. The vector a⃗ is the body attitude vector as defined in Chapter 2. The mass
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matrix M, Coriolis matrix C(v), quadratic drag matrix D(v), and G (⃗a) are defined in Chapter 2.

The control vector τ(v, a⃗, ξ) ∈ IR6 is defined as the vector of body-forces that are a result of body

velocity v, attitude of the vehicle a⃗, and p control inputs such as fin angle and propeller speed

denoted as ξ ∈ IRp. If the actuation parameters enter linearly into τ(v, a⃗, ξ) then the control vector

can be factored as

τ(v, a⃗, ξ) = Ga(v, a⃗, ξ)θa. (3.22)

Where Ga(v, a⃗, ξ) ∈ IR6xn is the (usually) non-linear regressor matrix and θa ∈ IRn is the parameter

vector that contains the actuator parameters to be identified. Examples of these terms include lift

and drag coefficients of the control surfaces and propeller coefficients. Substituting (3.22) into (3.21)

results in

Mv̇ = −C(v)v− D(v)v− G (⃗a) + Ga(v, a⃗, ξ)θa. (3.23)

The following AID is can accommodate any vehicle control configuration that satisfies two

conditions:

1. The parameters to be identified which make up θa must enter linearly into τ(v, a⃗, ξ)

2. The function Ga(v, a⃗, ξ) ∈ C1 and is bounded for bounded v, a⃗, and ξ. In the sequel we will

give conditions under which these signals can be proven to remain bounded.

This AID extension comes with an additional caveat. Since all terms on both sides of (3.23)

contain parameters to be estimated and these parameters enter linearly, the estimate of the set of

parameters is only defined up to scale. This is analogous to the limitations of the Nullspace Based

Least Squares (NBLS) parameter identification method defined in Section 4.3.5.
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3.4.2 AID of Plant and Actuation Parameters for Fully Coupled 6-DOF UUVs

This section extends the results of Section 3.3 to include control parameter identification of 6-DOF

UUVs. New extensions to the AID reported in [36] are reported in bold for clarity.

• Plant: Using the definition of the drag matrix D(v) = ∑6
i=1 |vi|D̂i, the plant is of the form:

Mv̇ = −C(v)v−
( 6

∑
i=1
|vi|D̂i

)
v− G (⃗a) + Ga(v, a⃗, ξ)θa (3.24)

• Task: Design parameter update laws for v̂(t), M̂(t), D̂i(t), ĝ(t), b̂(t), and θ̂a(t) such that

limt→∞ ∆v(t) = 0⃗, limt→∞
˙̂M(t) = 06x6, limt→∞

˙̂Di(t) = 06x6, limt→∞ ˙̂g(t) = 0, limt→∞
˙̂b(t) =

0⃗, and limt→∞
˙̂θa(t) = 0⃗

• Error Coordinates:

■ ∆v(t) = v̂(t)− v(t)

■ ∆M(t) = M̂(t)−M

■ ∆Di(t) = D̂i(t)− Di

■ ∆g(t) = ĝ(t)− g

■ ∆b(t) = b̂(t)− b

■ ∆θa(t) = θ̂a(t)− θa
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• Parameter Update Laws:

˙̂v =M̂−1
(
− C(M̂, v)v−

( 6

∑
i=1
|vi|D̂i

)
v− G (⃗a) + Ga(v, a⃗, ξ)θ̂a

)
− α∆v (3.25)

˙̂M =
γ1

2
(ψ1vT + vψT

1 + ∆vψT
2 + ψ2∆vT) (3.26)

˙̂Di =γ2|vi|∆vvT (3.27)

˙̂g =γ3 ∆νT RT (⃗a) e3 (3.28)

˙̂b =− γ4 J(∆ω)RT (⃗a) e3 (3.29)

˙̂θa =−γ5

(
Ga(v, a⃗, ξ)

)T
∆v (3.30)

Where

■ Ga(v, a⃗, ξ)θ̂a will be shown to be bounded in consequence of the boundedness of v,

a⃗, ξ, and θ̂a

■ C(M̂, v) is the Coriolis matrix defined in Chapter 2.

■ ψ1 = ad(v)T∆v

■ ψ2 = ˙̂v + α∆v

■ α, γ1, γ2, γ3, γ4, γ5 ∈ IR+

■ M̂(t0) is symmetric positive definite

■ v̂(t0) = v(t0)

The details of the much of the following stability proof are reported in [36] and are not repro-

duced here unless required for clarity on the extension for simultaneous identification of actuation
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parameters. As in [36] we develop the velocity error dynamics expression

M∆̇v =M( ˙̂v− v̇) (3.31)

=αM∆v− ∆Mψ2 − ad(v)∆Mv

−
( 6

∑
i=1
|vi|∆Di

)
v− ∆G(R(⃗a)) + Ga(v, a⃗, ξ) ∆θa.

Now consider the Lyapunov function candidate

V(t) =
1
2

∆vT M∆v +
1

2γ1
tr(∆M ∆MT) +

1
2γ2

6

∑
i=1

tr(∆Di ∆DT
i ) (3.32)

+
1

2γ3
(∆g)2 +

1
2γ4

∆bT∆b + 1
2γ5

∆θT
a ∆θa.

The Lyapunov candidate function (3.32) is:

• positive definite

• radially unbounded

• equal zero if and only if ∆v = 0⃗, ∆M = 06x6, ∆Di = 06x6 ∀i, ∆g = 0, ∆b = 0⃗, and ∆θa = 0⃗.

The time derivative of (3.32) is

V̇(t) =
1
2

(
∆̇vT M∆v + ∆vT M∆̇v

)
+

1
γ1

tr(∆M ˙∆MT
) +

1
γ2

6

∑
i=1

tr(∆Di ˙∆Di
T
) (3.33)

+
1

2γ3
∆g∆̇g +

1
γ4

∆bT∆̇b + 1
γ5

∆θT
a ∆̇θa.
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This can be simplified using (3.31). Substituting (3.25)-(3.29) results in

V̇(t) =− α∆vT M∆v + 1
2 ∆θT

a

(
G(v, a⃗, ξ)

)T
∆v + 1

2 ∆vT G(v, a⃗, ξ)∆θa +
1

γ5
∆θT

a ˙∆θa (3.34)

=− α∆vT M∆v + ∆θT
a

(
G(v, a⃗, ξ)

)T
∆v + 1

γ5
∆θT

a ∆̇θa.

Finally substituting the parameter update law (3.30) results in

V̇(t) =− α∆vT M∆v (3.35)

This expression is negative definite in ∆v and negative semidefinite in the error coordinates ∆v,

∆M, ∆Di, ∆g, ∆b, and ∆θa.

A proof that the smallest eigenvalue of M̂ is bounded away from zero is left as future work. We

will assume this statement is true if the parameters are initialized close to the “true” values, which

is confirmed in simulation studies.

We note from [36] that with v, ∆v, ∆M, ∆Di, ∆g, ∆b, and G(v, a⃗, ξ), bounded and M, Di, g,

b, and θa constant, it is implied that v̂, M̂, D̂i, ĝ, b̂, and θ̂a are bounded. If we assume that the

smallest eigenvalue of M̂ is bounded away from zeros for all time then M̂−1 is bounded and thus

∆̇v is bounded. Additionally ∆v ∈ L2 and bounded ∆̇v implies that limt→∞ ∆v = 0⃗

Since the parameter update equation (3.30) is bounded and limt→∞ ∆v = 0⃗ this implies that

limt→∞
˙̂M = 0⃗, limt→∞

˙̂Di = 0⃗ ∀i, limt→∞ ˙̂g = 0, limt→∞
˙̂b = 0⃗, and limt→∞

˙̂θa = 0⃗. Therefore the

estimator’s angular and linear velocities asymptotically converge to the velocities of the actual

vehicle and all estimated parameters converge to a common scalar multiple of their constant values

[36] .
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3.4.3 Extension of AID to 6-DOF UUV Plants with Diagonal Mass and Drag
Matrices

This section reports an extension of the AID reported in Section 3.4.2 to the class of UUV plants

with diagonal mass and drag matrices. Smallwood and Whitcomb report the first AID for fully

decoupled UUV plants in [48]. Their approach was to approximate the 6-DOF UUV plant model

as six one degree of freedom (1-DOF) plant models where each degree of freedom is completely

independent of all the others and they report a common AID applicable to all six 1-DOF plants.

The AID presented here differs from [48] in that it includes coupling from Coriolis terms, but omits

all linear damping terms.

Consider the case of plant models of UUVs of the form (3.21) where the mass M and drag D

matrices in are diagonal. Specifically

M =diag([m11; m22; m33; m44; m55; m66]) (3.36)

=diag(m) (3.37)

and

D =

⎡⎢⎢⎢⎢⎢⎢⎣

|v1|d11 0 0 0 0 0
0 |v2|d22 0 0 0 0
0 0 |v3|d33 0 0 0
0 0 0 |v4|d44 0 0
0 0 0 0 |v5|d55 0
0 0 0 0 0 |v6|d66

⎤⎥⎥⎥⎥⎥⎥⎦ (3.38)

= diag(|v|) diag(d). (3.39)

The total mass vector m ∈ IR6 contains the sum of the added mass and rigid body terms and the

total drag vector d ∈ IR6 contains the scalar quadratic drag parameters for each degree of freedom.

• Task: Modify parameter update laws (3.26) (3.27) to adaptively identify m̂(t) and d̂(t) defined

in (3.37) and (3.39) such that limt→∞ ˙̂m(t) = 0⃗, limt→∞
˙̂d(t) = 0⃗,
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• Modified Error Coordinates:

■ ∆m(t) = m̂(t)−m

■ ∆d(t) = d̂(t)− d

For convenience we will define ∆M = diag(∆m) and ∆D = diag(∆d).

• Parameter Update Laws:

˙̂m =γ1
(
vT diag(ψ1) + ψT

2 diag(∆v)
)T (3.40)

˙̂d =γ2
(
∆vT diag(|v|) diag(v)

)T (3.41)

Where

■ diag
(
m̂(t0)

)
is PDS, or equivalently all entries in m̂(t0) are positive

• System and Stability Proof

Consider the following Lyapunov function candidate

V(t) =
1
2

∆vT M∆v +
1

2γ1
∆mT∆m +

1
2γ2

∆dT∆d (3.42)

+
1

2γ3
(∆g)2 +

1
2γ4

∆bT∆b +
1

2γ5
∆θT

a ∆θa.

As in Section 3.4.2 (3.42) is

■ positive definite

■ radially unbounded

■ equal zero if and only if ∆v = 0⃗, ∆m = 0⃗, ∆d = 0⃗, ∆g = 0, ∆b = 0⃗, and ∆θa = 0⃗.
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The time derivative of (3.42) is

V̇(t) =
1
2

(
∆̇vT M∆v + ∆vT M∆̇v

)
+

1
γ1

˙∆mT∆m +
1

γ2
∆̇dT∆̇d (3.43)

+
1

2γ3
∆g∆̇g +

1
γ4

∆bT∆̇b +
1

γ5
∆θT

a ∆̇θa.

Substituting in (3.31) yields

V̇(t) =− α∆vT M∆v− 1
2

(
vT∆Mψ1 + ψT

2 ∆M∆v
)

(3.44)

− 1
2

(
∆vT∆Mψ2 + ψT

1 ∆Mv
)
− ∆vTdiag(|v|)∆Dv

− ∆vT∆G(R(⃗a)) + ∆vTGa(v, a⃗, ξ)∆θa +
1

γ1
˙∆mT∆m +

1
γ2

∆̇dT∆̇d

+
1

2γ3
∆g∆̇g +

1
γ4

∆bT∆̇b +
1

γ5
∆θT

a ∆̇θa.

Again we first substitute in the unmodified parameter update laws (3.28)-(3.30) for clarity.

This yields

V̇(t) =− α∆vT M∆v− 1
2

(
vT∆Mψ1 + ψT

2 ∆M∆v
)

(3.45)

− 1
2

(
∆vT∆Mψ2 + ψT

1 ∆Mv
)
− ∆vTdiag(|v|)∆Dv

+
1

γ1
˙∆mT∆m +

1
γ2

∆̇dT∆d.
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Note that for all vectors y1, y2 ∈ IR6 diag(y1)y2 = diag(y2)y1 and yT
1 diag(y2) = yT

2 diag(y1).

Thus

V̇(t) =− α∆vT M∆v−
(

vTdiag(ψ1) + ψT
2 diag(∆v)

)
∆m (3.46)

− ∆vTdiag(|v|) diag(v)∆d

+
1

γ1
˙∆mT∆m +

1
γ2

∆̇dT∆d.

Finally, we substitute in the modified parameter update laws (3.40)-(3.41) to yield

V̇(t) =− α∆vT M∆v. (3.47)

This result for the stability of the modified AID for diagonal UUV plants shares the same

properties as the result for the AID of fully coupled UUV plants reported in Section 3.4.2. The

implication is that as previously, the estimate of unmodified parameters converge to constant

values, and limt→∞ ˙̂m = 0⃗ and limt→∞
˙̂d = 0⃗.
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Chapter 4

Identification of Dynamical UUV
Plants with Random Sample
Consensus (RANSAC)

4.1 Introduction

This chapter presents an algorithm that uses the random sample consensus (RANSAC) framework

for robust identification of parameters of dynamical systems. We call this algorithm Dynamical

Plant Identification using RANSAC (DIRANSAC). The original RANSAC algorithm was de-

veloped to estimate transformation models between camera image planes using corresponding

features from a set of observed data that contain outliers. RANSAC is a fundamental tool in the

field of computer vision. At its most basic variant, RANSAC involves first randomly sampling the

data to generate a hypothesis of the parameters to be identified, and then testing this hypothesis

against the entire dataset [11]. RANSAC was designed to improve model fitting when using

observational data corrupted by both Gaussian and non-Gaussian noise (commonly referred to

as noisy data with outliers). Although the noise characteristics of dynamical plants are different

than those of image feature correspondence, the author has found the RANSAC framework to

improve the estimate of dynamical plant parameters in the presence of noisy observational data

with outliers.
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Such an approach can be advantageous in several instances. The plant parameters for com-

plex dynamical systems, such as underwater vehicles whose underlying dynamics are infinite

dimensional due to the effects of the viscous fluid in which they operate, are often identified from

observed experimental data by fitting the data to approximate finite-dimensional models. As

a result, the observational data collected in experiments will not fit the model exactly and the

associated error will be non Gaussian, limiting the effectiveness of classic least squares approaches

to parameter estimation of these plants. Additionally dynamical systems sometimes operate

intermittently in two or more different regimes; in the case of underwater robotic vehicles one

such regime dominates when the vehicle is at or near the surface and another when the vehicle is

fully submerged [12]. By design DIRANSAC will fit a model that agrees with the majority of the

observations, and the effect of data collected in other regimes will be minimized.

The remainder of this chapter is organized as follows: Section 4.2 first provides a review of

literature on the original RANSAC algorithm and the many reported improvements on RANSAC

currently used the field of computer vision. Section 4.2 then reports a review of literature in other

fields besides computer vision that report implementations of the RANSAC algorithm to solve

parameter estimation problems. Section 4.3 reports the new DIRANSAC algorithm. Section 4.4

reports the methodology for a simulation study to identify parameters of a simple one degree of

freedom (1-DOF) unmanned underwater vehicle (UUV) dynamical plant using noisy observational

data corrupted with outliers. Section 4.5 reports simulated results and a discussion of these results.

4.2 Literature Review

4.2.1 Advances in the RANSAC Algorithm

First published in 1981, the seminal RANSAC paper [11] has been cited over 19,000 times and is

widely used in many applications in the field of computer vision. Many reported improvements

on RANSAC have followed. A thorough survey of several notable improvements over the basic

RANSAC algorithm is reported by Choi et al., more than 15 years after the original paper [3].
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The authors in [3] categorize the many reported improvements by their intended objective: to be

accurate, to be fast, and to be robust. An overview of their findings is given as follows:

To Be Accurate: In an effort to be more accurate, other loss functions were proposed including

M-estimator SAC (MSAC) and Maximum Likelihood SAC (MLESAC) [51] as well as adding a local

optimization step as in Locally Optimized RANSAC (LO-RANSAC) [4]. MSAC, MLESAC, and

the original RANSAC were all found to have similar accuracies in homography estimation, and

LO-RANSAC was shown to offer improvements in accuracy at an additional computational cost.

To Be Fast: Methods have been proposed to increase speed by employing guided sampling like

Guided MLESAC [50] and Progressive SAC (PROSAC) [5], and partial evaluation methods such as

Randomized RANSAC (R-RANSAC) [34] and Sequential Probability Ratio Test (SPRT) [35]. How-

ever, in theory guided MLESAC and PROSAC can actually impair the global search. R-RANSAC

and SPRT were shown to reduce computational time by only performing the verification process

on the entire data set if the estimate passes the pretest.

To Be Robust: The robustness of the RANSAC algorithm can be improved using adaptive

evaluation to adjust the inlier threshold such as Least Median of Squares (LMedS) [47] or MLESAC

using the estimate of the error variance (u-MLESAC) [2], although these approaches experience

problems if the expected inlier ratios are less than 0.5. Adaptive termination is also used in

Maximum A Posterior Estimation SAC (MAPSAC) [10] to recompute the number of iterations

required based on the observed inlier ratios.

4.2.2 Reported Implementations of the RANSAC Algorithm

Implementations of RANSAC-based algorithms are reported in fields other than computer vision.

Farahmand et al. proposes a novel “doubly robust” Kalman smoother to handle both state and

measurement outliers in dynamical systems [8]. It is shown to perform comparably to RANSAC-

Huber smoothers in dynamical trajectory tracking with measurement outliers ratios less than 50%,

but shown to perform considerably better than RANSAC when subject to state outliers. In [8] the
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authors propose a version that allows for on-line estimation. There are no reported improvements

to the basic RANSAC algorithm used for comparison, and experiments with only a fixed number

of hypothesis for are reported.

Schnabel in [45] reports an implementation of a RANSAC based algorithm to detect geometric

shapes in point clouds. The authors fit models of different shapes and optimize the sampling

process by increasing sampling of nearby data (in Cartesian space). The results demonstrates

robust object detection using RANSAC in noisy point cloud data corrupted by outliers.

Some implementations of RANSAC in the field of biomedical research are reported. Uhercik et

al. in [52] reports a RANSAC based algorithm for estimating parameters used in localization of

surgical tools in 3-D ultrasound images. The results indicate improvements in computational time

and accuracy over other existing methods when applied to both simulated and real ultrasound

images. Kang et al. in [25] reports a RANSAC based algorithm to model the nonlinear phagocyte

transmigration process and compares performance with least squares.

To the best of the author’s knowledge this thesis is the first reported application of RANSAC to

dynamical plant parameter estimation.

4.3 Methodology

The basic RANSAC algorithm was adapted to better estimate plant parameters in dynamical

systems. Several improvements found in the literature were directly implemented in addition to

improvements that follow from key observations by the author about the parameters of dynamical

systems. The DIRANSAC algorithm was generalized for dynamical systems with q degrees of

freedom and k control inputs where T observations are available.

The inputs to DIRANSAC are observational data, known plant parameters, and DIRANSAC

hyperparameters, or parameters that control the process of the algorithm and can be tuned for

performance. The observational data consists of τ⃗ob ∈ IRk×T , a vector of observed plant control

inputs and v⃗ob ∈ IRq×T , a vector of observed plant velocities. All observational data must be
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sampled at the same time, i.e. for every τob(ti) there is a corresponding vob(ti). All known plant

parameters such as length and volume are denoted as Γkn. The inlier threshold ϵ ∈ IRq is a

hyperparameter that defines the distance threshold used to classify a data point as an inlier or

outlier of the hypothesized estimate. The probability of success η is a hyperparameter that provides

the acceptable lower limit of the likelihood that the solution that is returned is computed using only

inliers. The initial guess of the inlier ratio is passed as I, which is best initialized to a low estimate.

Lastly the hyperparameter m provides an estimate for the number of random observations that

must be drawn to compute a well defined solution. A higher estimate of m is more conservative.

There are two outputs from DIRANSAC, the estimate of the parameter set with the lowest error

θp, and the ratio of inliers for that parameter set Ie. An overview is presented in Algorithm 1.

4.3.1 Check if the Solution is Well Defined

Naturally the question arises as to how many samples should be randomly drawn to compute

the estimate θ̂p. There are analytical solutions for the number of samples required to estimate the

fundamental matrix in computer vision applications, and the commonly used algorithm nominally

uses eight independent feature correspondences to compute a well defined solution [17]. However,

there are no analytical solutions for the number of samples required to estimate parameters of

an arbitrary dynamical system. Furthermore, many samples may be degenerate due to repetitive

excitation. As a solution, we propose to continue to randomly sample the observations until a well

defined solution can be computed. The criteria that specifies whether a well defined solution is

possible is dependent on the estimation method and three definitions are reviewed in Section 4.3.5.

It is advantageous to limit the number of samples used in the estimate as the likelihood of randomly

sampling only inlier observations decreases exponentially as noted in Section 4.3.4. In practice,

we find that this number can be on the order of 30-50 samples for the 1-DOF simulation study

reported in Section 4.4, but the number of samples depends greatly on the plant to be identified

and the excitation involved.
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Algorithm 1 DIRANSAC

Input:
τ⃗ob Vector of plant control inputs [τob(t0), τob(t1), . . . , τob(tn)] ∈ IRk×T

v⃗ob Vector of observed plant states [vob(t0), vob(t1), . . . , vob(tn)] ∈ IRq×T .
ϵ Vector of inlier thresholds for each DOF.
η Probability of success
I Initial estimate of fraction of inliers.
m Estimated number of samples required to fit model
Γkn Known plant parameters.

Output:
θp Parameter estimate with the lowest error
Ie Fraction of inliers found with estimate

1: function DI_RANSAC(⃗τob , v⃗ob , ε, η, I , m, Γkn)
2: LowestError = inf
3: kmin ← ComputeIterationsRequired(η, I, m) // Section 4.3.4
4: while k < kmin do
5: S = Empty subset of observations
6: while Solution is not well defined do
7: S = S + Randomly sampled observation from τ⃗ob, v⃗ob
8: W (, B)← ComputeDesignMatrix(S , Γkn) // Section 4.3.5
9: Check if solution is well defined // Section 4.3.1

10: end while
11: θ̂p ← ComputeParameterHypothesis(W (, B)) // Section 4.3.5
12: if PreliminaryTest(θ̂p) then // Section 4.3.2
13: try
14: v⃗θ̂p

← ForwardSimulation(θ̂p, τob(t0), vob(t0), Γkn) // Section 4.3.3
15: eθ̂p

← ComputeModelFitError(⃗vθ̂p
, v⃗ob ) // Section 4.3.3

16: if eθ̂p
< LowestError then

17: LowestError = eθ̂p

18: θp = θ̂p
19: Ie ← ComputeFractionOfInlers(⃗vθ̂p

, v⃗ob, ϵ ) // Section 4.3.4
20: kmin ← ComputeIterationsRequired(η, Ie, m) // Section 4.3.4
21: end if
22: catch Numerical Integration Failure
23: continue
24: end try
25: end if
26: end while
27: return θp, Ie
28: end function
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4.3.2 Preliminary Test

A preliminary test is used in an effort to save time by not attempting the verify hypothesized

parameter estimates that are clearly wrong [34]. In dynamical plant applications some parameters

such as mass terms are known to be positive while others like drag are known to be dissipative or

negative. We can apply this knowledge by using a preliminary test to check if all the parameters of

the hypothesized estimate θ̂p are the correct sign. If they are not, then the verification process is

skipped and the hypothesized estimate is discarded.

4.3.3 Forward Simulation and Model Fit Error

Verification of the hypothesized estimate is performed by first attempting to complete a simulation

of the dynamical plant using the hypothesized parameter estimate θ̂p subject to the same control

inputs τob(t), and initial condition vob(t0). This simulation is commonly performed using a numer-

ical integration package, and if the error in the parameter estimate is significant, the simulation

might fail to meet integration tolerances or otherwise not complete. For this reason the algorithm

makes use of a try/catch framework. If the simulation fails then hypothesized estimate is assumed

to not be correct and discarded.

In the event that the forward simulation does complete, the forward simulation will return the

vector of plant velocities v⃗θ̂p
computed using the hypothesized estimate as

v⃗θ̂p
= [vθ̂p

(t0), vθ̂p
(t1), . . . , vθ̂p

(tn)] ∈ IRq×T . The model fit error is computed as

eθ̂p
=

q

∑
j=1

(
wj

(
||[⃗vθ̂p

]j − [⃗vob(t)]j||2
)2

)
, (4.1)

where wj is the weight for the jth degree of freedom.

Although it is more common to report the mean absolute error as a measure of parameter iden-

tification accuracy, this proposed error metric was found to better verify hypothesized estimates.

67



4.3.4 Inlier Classification and Early Exit Criteria

The inlier classification is computed from the simulated plant velocities v⃗θ̂p
. The number of inliers

is defined as the number of observations in v⃗ob that are within some inlier threshold distance

specified by ϵ of the corresponding computed plant velocities in v⃗θ̂p
. The fraction of inliers Ie for a

given hypothetical parameter estimate is simply the number of inliers divided by the total number

of observations T . If the plant has more than one degree of freedom, an individual inlier threshold

for each degree of freedom can be used and thus ϵ ∈ IRq. In this case Ie is defined as some weighted

average of all the fraction of inliers for each degree of freedom.

The number of iterations kmin required is computed as a function of the probability of success η

and the estimated fraction of inliers I. This is adapted from the original RANSAC algorithm [11]

as

kmin =
log(1− η)

log(1− Im)
. (4.2)

Where η is the probability of selecting a subset of observations S with only inliers and m is the

number of randomly selected samples required to compute a parameter estimate. As described in

Section 4.3.1 the number of samples m required to estimate a solution is not constant and increases

as needed to ensure that the solution is well defined. As a result we propose to compute kmin as

defined in (4.2) using a high estimate for m and use the following criteria to exit early [1]. The

minimum number of iterations kmin is recalculated each time a new best estimate is found using

the inlier ratio of the new best estimate Ie. If the number of iterations performed is greater than the

newly computed kmin then the algorithm exits.

We found that in practice for the 1-DOF system described in Section 4.4 that at least m ≥ 30

samples are often drawn, and with “reasonable” inlier ratios of w = 0.8 the number of required

iterations to achieve a good result with 0.95 probability was ≈ 2.5e3.
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4.3.5 Parameter Identification Methods

The DIRANSAC algorithm uses one of several types of least squares methods to compute the

hypothesis. We will refer to the particular method used in DIRANSAC as the kernel of the

algorithm. This section provide a brief overview of three least squares methods.

Ordinary Least Squares (OLS)

Overdetermined OLS problems have the form Ax ≈ b where the A is the input data, b is the

output data, and x is a vector of parameters to be identified [21], [53]. OLS problems account for

noise in b but assume no noise in A. Let Ai ∈ IRmxp and bi ∈ IRmx1 be individual observations of

the systems. We can define the design matrix W as

W =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
A1
A2
...

Ai

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ∈ IRnm×p i = 1, 2, . . . n, (4.3)

where n is the number of observations. Likewise the observational vector is defined as

B =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
b1
b2
...
bi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ∈ IRnm×1 i = 1, 2, . . . n. (4.4)

Assuming WTW is full rank, and thus invertible, solutions to the OLS problem that minimize

||Ax− b||2 are

x = (W
T

W)−1 W
T

B ∈ IRp×1. (4.5)

Solutions to the OLS problem are ill defined when WTW is not full rank, and thus not invertible.

Total Least Squares (TLS)

One class of overdetermined TLS problems has the form Ax = b where the A is the input data,

b is the output data, and x is a vector of parameters to be identified [21], [53]. TLS solutions assume

noise in A and in b. Let Ai ∈ IRmxp and bi ∈ IRmx1 be individual observations of the systems.
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We can define the design matrix W and the observational vector to be the same as in the OLS

formulation. Solutions to the TLS problem can be found by using singular value decomposition.

Let

[
W, B

]
= USVT ∈ IRm×p+1 (4.6)

be a singular value decomposition where the diagonal matrix of ordered singular values is

S = diag(s1, s2, ...sp, sp+1), (4.7)

where si > si+1, i = 1, 2, . . . p. If we define the blocks of V to be

V =

[
V11 V12
V21 V22

]
, V12 ∈ IRp×1, V12 ∈ IR1, (4.8)

unique solutions for x can be computed as

x = −V12/V12 ∈ IRp×1. (4.9)

Solutions to the TLS problem are ill defined when sp ≈ sp+1

Nullspace Based Least Squares (NBLS)

We define NBLS problems to have the form Ax = 0 where the A is the input data, and x is

a vector of parameters to be identified. Experimental results to be published by this author and

others indicate that solutions to the NBLS are sensitive to noise in A. Let Ai ∈ IRmxp be individual

observations of the systems. We can define the design matrix W as

W =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
A1
A2
...

Ai

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ∈ IRnm×p i = 1, 2, . . . n. (4.10)

Given an mnxp matrix W where mn > p, the unit vector x that minimizes

min
x
||Wx||2 , ||x||2 = 1 (4.11)
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is the unit eigenvector corresponding to the smallest eigenvalue of W
T

W. Solutions to the

NBLS are only defined up to scale. In practice the solutions are scaled such that they match one

known parameter. If more than one eigenvalue of W
T

W is approximately zero, or equivalently if

dimension of the nullspace of W
T

W is greater than one, then solutions are not well defined.

4.4 Simulated 1-DOF Experimental Setup

The performance of the new DIRANSAC algorithm was tested using observational data of a

simulated 1-DOF UUV plant. The equations of motion (EOM) for a fully uncoupled 1-DOF UUV

can be expressed as [12]

τ(t) = mv̇(t) + d|v(t)|v(t)− b (4.12)

mv̇(t) = −d|v(t)|v(t) + b + τ(t). (4.13)

We consider the case where available actuation consists of both a thruster and an actuated hydro-

dynamic control surface. A simple model for thruster force is

τprop(t) = β1ω(t)2, (4.14)

where β1 is the quadratic propeller coefficient with units (N ∗ s2)/rad2 and ω(t) is commanded

angular speed of propeller in rad/s. A simple approximate model of the actuated hydrodynamic

control surface is

τcs(t) = −β2|v(t)|v(t)α(t), (4.15)

where β2 is the hydrodynamic drag coefficient with units of (N ∗ s2)/rad and α is the commanded

deflection with units of radians.
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Thus the EOM of a 1-DOF underwater vehicle with a thruster and control surface becomes

mv̇(t) = −d|v(t)|v(t) + b + β1ω(t)− β2|v(t)|v(t)α(t) (4.16)

0 = −m ˙v(t)− d|v(t)|v(t) + b + β1ω(t)− β2|v(t)|v(t)α(t). (4.17)

All the unknown plant and actuator parameters enter linearly in (4.17). For this simulation we

use NBLS as the kernel of DIRANSAC algorithm and we define a vector of unknown plant and

actuator parameters as

θp =
⏐⏐m d b β1 β2

⏐⏐T . (4.18)

Since all the unknown parameters enter linearly (4.17) can be written as

0 =
∂

∂θp

[
−mv̇(t)− d|v(t)|v(t) + b + β1ω(t)− β2|v(t)|v(t)α(t)

]
θp (4.19)

0 =
⏐⏐−v̇(t) −|v(t)|v(t) 1 ω(t) −|v(t)|v(t)α(t)

⏐⏐ θp (4.20)

0 = Wθp. (4.21)

The following control signals were used to excite the system in simulation

ω(t) = sin(t ∗ 0.25)rad/s (4.22)

α(t) = sin(t ∗ 0.028)rad (4.23)

The following noise models were used:

• v(t) = vtrue(t) +N (0, 0.04) + sp(0.05, 0.5, p) (m/s)

• v̇(t) = v̇true(t) +N (0, 0.01) + sp(−0.01, 0.04, p) (m/s2)

• ω(t) = ωtrue(t) +N (0, 0.25) + sp(1.25, 6.25, p) (rad/s)

• α(t) = αtrue(t) +N (0, 0.25) + sp(1.25, 6.25, p) (m)
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Where N (µ, σ) is white Gaussian noise with mean µ and standard deviation σ and sp(µs, a0, p)

is random “salt and pepper” noise with mean µs, amplitude a0 and outlier probability of p such

that:

sp(µs, a0, p) =

⎧⎪⎨⎪⎩
P(0) =(1-p)
P(µs + a0) =p/2
P(µs − a0) =p/2

(4.24)

1-DOF parameter identification was performed in a sequence of simulations with increasing

measurement error outlier ratios “p”. The true plant parameters were chosen to match those exper-

imentally identified in [32]. The plant parameters were estimated using the standard NBLS method

and the new DIRANSAC algorithm using the NBLS kernel. The simulation and identification

for each outlier ratio was repeated 10 times, each iteration with the same noise model, but with

different random noise values. No filtering was performed on any signal.

Parameter validation was performed by completing a simulation of the UUV plant dynamics

using the same control input and initial condition, but using the estimated plant parameters. The

error in parameter estimation is reported as mean absolute error (MAE) between the simulated

plant velocities using the estimated parameters and the simulated plant velocities using the “true”

parameters.

4.5 Results

4.5.1 Simulated 1-DOF Data

Figure 4.1 provides a plot of the MAE of plant parameters identified from observational datasets

corrupted by an increasing ratio of outliers. Results from both NBLS and the DIRANSAC algorithm

with the NBLS kernel are shown for comparison.
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Figure 4.1: Mean absolute error of plant velocities when using parameters identified from data with an
increasing ratio of measurement outliers

Figure 4.2 illustrates the improvement in parameter identification when using the DIRANSAC

method. Figure 4.2 provides a plot of the plant velocity in simulation with parameters estimated

from both the NBLS and DIRANSAC with the NBLS kernel methods. The outlier ratio of this

particular simulation was 0.13 and the plot in Fig 4.2 includes the simulated noisy data with outliers

for scale.

4.5.2 Discussion

These results suggest that the new DIRANSAC algorithm offers improvements over traditional

least squares methods when estimating parameters from observational data corrupted by outliers.

To confirm the performance of DIRANSAC the parameters of a simulated 1-DOF UUV were

estimated using NBLS and DIRANSAC with a NBLS kernel. Results of parameter estimation

using other least squares methods such as OLS and TLS were not reported, and is the subject of

future work. However, the author believes that DIRANSAC with OLS and TLS kernels would

offer similar improvements over traditional implementations of OLS and TLS respectively if the

observational data is corrupted by non-Gaussian noise.
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Figure 4.2: One degree of freedom plant velocity in forward simulation using parameters identified by each
method. Fraction of outliers = 0.13

The estimation error of both NBLS and DIRANSAC with a NBLS kernel increases as the outlier

ratio increases. However, these results indicate the estimation error using the DIRANSAC method

is consistently lower than that of the NBLS method and the performance improvement over the

traditional NBLS methods increases as the outlier ratio increases.
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Chapter 5

Conclusion

Accurate identification of dynamical models for underwater robotic vehicles is useful for predictive

simulation studies, model-based control algorithms, and model-based approaches to fault detection.

The process of model identification or model estimation can be separated into two steps. First, the

structure of the dynamical model can be developed using first principles. Chapter 2 accomplished

this by reporting a derivation of the equations of motion (EOM) of underwater vehicles using

Newtonian dynamics. The second step of model identification involves experimentally identifying

the unknown parameters that enter into the dynamical model. Chapter 3 and Chapter 4 each

reported new methods to accomplish this task.

Chapter 3 reported a simulation study with results that indicate the adaptive identifier (AID)

reported in [36] can be extended to underactuated three degree of freedom (3-DOF) unmanned un-

derwater vehicles (UUVs). Chapter 3 also reported an extension of the same AID to simultaneously

identify plant and control parameters for six degree of freedom (6-DOF) UUVs. An additional

extension of the AID to UUV plants of diagonal mass and drag matrices was reported.

Chapter 4 reported a new method for parameter identification of dynamical systems using

the random sample consensus (RANSAC) framework. Simulation studies suggest that the new

Dynamical Plant Identification using RANSAC (DIRANSAC) algorithm offers improvements over

traditional least squares methods when estimating parameters of plants using observational data

corrupted by non-Gaussian noise.
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5.1 Future Work

• Model-based fault detection: Underwater vehicles may experience faults during deploy-

ment which could include thruster failure, chassis damage, and changes in buoyancy. These

faults would result in large changes to model parameters such as thruster coefficients, drag,

and mass. The AID reported in Chapter 3 can be implemented on board a UUV to run in

real time. As a result, the AID may be able to detect significant changes in the adaptively

identified parameter set during a mission. If the changes indicate a possible fault condition,

the UUV could execute recovery behaviors.

• Parameter Identification of Non-Traditional Underwater Locomotion: The methods re-

ported in Chapter 3 and Chapter 4 might be used to identify the control parameters of

some non-traditional locomotion methods such as bio-inspired jet propulsion or fin undula-

tion. The DIRANSAC algorithm was shown to be robust to non-Gaussian noise which may

prove useful for fitting models that are finite approximations of perhaps infinite dimensional

locomotion dynamics.
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Appendix A

On the Relationship Between
“Derivative” and “Integral” Methods
used in Least Squares Parameter
Estimation of Dynamical Plant
Models
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This appendix reports a relationship between the “Integral Method” and the “Derivative

Method” in Nullspace Based Least Squares (NBLS) parameter estimation. This result may have

broader applicability to the relationships between “Integral Methods” and “Derivative Methods” in

other least squares solutions such as Ordinary Least Squares (OLS) and Total Least Squares (TLS).

Section A.1 reports a definition of the “Derivative Method”. Section A.2 reports a definition

of two different formulations of the “Integral Method”. Section A.3 reports a proof showing the

relationship between the two methods when applied to NBLS parameter estimation.

A.1 Regressor Matrix Formulation using “Derivative Method”

Using the convention defined in [12] we consider six degree of freedom (6-DOF) underwater

robotic dynamical plants of the form

τ(ν, ω, η, γ) = M
⏐⏐⏐⏐ ν̇
ω̇

⏐⏐⏐⏐+ (D(ν, ω) + C(ν, ω))

⏐⏐⏐⏐ν
ω

⏐⏐⏐⏐+ g(η, γ), (A.1)

where the mass matrix M is diagonal. τ(ν, ω, η, γ) is the control vector function where γ are the

control inputs. In NBLS parameter estimation we define the vector θp ∈ Rn to be a vector of n

unknown parameters to be estimated. Let the structure of θp be defined as

θp =
[
mp

T . . .
]T ∈ Rn, (A.2)

where

mp =
⏐⏐m11 m22 m33 m44 m55 m66

⏐⏐T ∈ R6 (A.3)

is a vector of unknown mass parameters. This appendix only considers dynamical plants with

diagonal mass matrices for clarity, but this analysis can be extended to plants with mass matrices

that are symmetric such as those found in [36].
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Since all the unknown parameters in θp enter linearly into (A.1), the EOM can be rearranged

and written in the form

0 =
∂

∂θp

[
M

⏐⏐⏐⏐ ν̇
ω̇

⏐⏐⏐⏐+ (D(ν, ω) + C(ν, ω))

⏐⏐⏐⏐ν
ω

⏐⏐⏐⏐+ g(η, γ)− τ(ν, ω, η, γ)

]
θp

0 = W(ν̇, ω̇, ν, ω, η, γ)θp,

(A.4)

where W(ν̇, ω̇, ν, ω, η, γ) is the regressor matrix. Let W ti be the regressor matrix computed with

observations made at time ti. Each W i matrix can be appended to the end of the matrix W as

W =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
W t0

W t1
...

W ti

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ti ∈ [t0, tn]. (A.5)

If the parameter vector θp ̸= 0 ∈ NULL(W ti ) ∀i then θp ∈ NULL(WT
W). The basis for the proof

of this statement is found in [19].

It follows directly in [19] that

NULL(WT
W) =

⋂
ti∈[t0,tn ]

NULL(W T
ti

W ti ). (A.6)

Each regressor W ti is at most rank 6 (for this 6-DOF system) and thus the product W T
ti

W ti must

have a null space of at least dimension n-6. Although the structure of the regressor matrix W is

constant and specific to the derivation above, the entries in (and thus the null space of) W ti will

change as the plant (or vehicle) is subject to different excitation modes (maneuvers). Thus the plant

should be excited in as many modes as possible. This will reduce the dimension of the intersection

given in (A.6), or equivalently reduce the dimension NULL(WT
W). In theory over time more

regressors with orthogonal null spaces are appended to W and the dimension NULL(WT
W) will

be one. When this occurs, θp will be in the image of a one dimensional subspace and thus defined

up to scale.
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A.2 Regressor Matrix Formulation using “Integral Method”

To avoid derivatives of signals ν, ω both sides of (A.4) can be integrated from t0 to some time step

ti as

∫ ti

t0

0 dt =
∫ ti

t0

W(ν̇, ω̇, ν, ω, η, γ)θp dt (A.7)

0 =
∫ ti

t0

[
W(ν̇, ω̇, 0, 0, 0, 0) (A.8)

+ W(0, 0, ν, ω, η, γ)

]
dt θp (A.9)

0 =

[ ∫ ti

t0

W(ν̇, ω̇, 0, 0, 0, 0)dt (A.10)

+
∫ ti

t0

W(0, 0, ν, ω, η, γ)dt
]

θp. (A.11)

If the mass matrix is assumed to be diagonal, then Ŵ can be defined to be

Ŵ
⏐⏐⏐
ti
=

∫ ti

t0

W(ν̇, ω̇, 0, 0, 0, 0)dt

Ŵ
⏐⏐⏐
ti
=

⎡⎢⎢⎢⎢⎢⎢⎣

w11 0 0 0 0 0 0 . . . 0
0 w22 0 0 0 0 0 . . . 0
0 0 w33 0 0 0 0 . . . 0
0 0 0 w44 0 0 0 . . . 0
0 0 0 0 w55 0 0 . . . 0
0 0 0 0 0 w66 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(A.12)

where

w11 = u(ti)− u(t0) w44 = a(ti)− a(t0) (A.13)

w22 = v(ti)− v(t0) w55 = b(ti)− b(t0) (A.14)

w33 = w(ti)− w(t0) w66 = c(ti)− c(t0). (A.15)
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We substitute (A.12) into (A.11) and use Simpson’s rule to numerically integrate the second term to

obtain

0 =

[
Ŵ

⏐⏐⏐
ti
+

∫ ti

t0

W(0, 0, ν, ω, η, γ)dt
]

θp (A.16)

0 =

[
Ŵ

⏐⏐⏐
ti
+

i

∑
k=1

∫ tk

tk−1

W(0, 0, ν, ω, η, γ)dt
]

θp (A.17)

0 =

[
Ŵ

⏐⏐⏐
ti
+

i

∑
k=1

[
∆t
3n

[
W

⏐⏐⏐
ν̇,ω̇=0, x=x(tk−1)

+ 2
n/2−1

∑
j=1

W
⏐⏐⏐
ν̇,ω̇=0, x=x2j

(A.18)

+ 4
n/2

∑
j=1

W
⏐⏐⏐
ν̇,ω̇=0, x=x2j−1

+ W
⏐⏐⏐
ν̇,ω̇=0, x=x(tk)

]]]
θp (A.19)

0 =W̃
⏐⏐⏐
ti

θp. (A.20)

where xj = x(tk−1)+ jh, h =
1
n
[x(tk)− x(tk−1)], and n is the number of intervals used in Simpson’s

method. The formulation above assumes that x(t) is a linear function between ti−1 and ti i.e.

x(t) =
xti − xti−1

ti − ti−1
∗ t, t ∈ [ti−1, ti]. We can use trapezoidal integration instead of Simpson’s rule.

The result is the following alternate formulation

0 =

[
Ŵ

⏐⏐⏐
ti
+

∫ ti

t0

W(0, 0, ν, ω, η, γ)dt
]

θp (A.21)

0 =

[
Ŵ

⏐⏐⏐
ti
+

i

∑
j=1

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]∆t
2

]
θp (A.22)

0 =W̃
⏐⏐⏐
ti

θp. (A.23)

Similar to the “Derivative Method” we can observe plant states during excitation and use the data

to compute the regressor matrix W̃ . Let W̃
⏐⏐⏐
ti

be the regressor matrix computed at time ti. Each
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W̃
⏐⏐⏐
ti

matrix can be appended to the end of the matrix WINT as

WINT =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

W̃
⏐⏐⏐
t1

W̃
⏐⏐⏐
t2

...

W̃
⏐⏐⏐
ti

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
ti ∈ [t1, tn]. (A.24)

If the parameter vector θp ̸= 0 ∈ NULL
(
W̃

⏐⏐⏐
ti

)
∀i then θp ∈ NULL(WT

INTWINT). The proof,

again in found in [19], is the same as before.

A.3 Relationship Between the Nullspaces of the
“Derivative Method” and “Integral Method”

Claim: The nullspaces defined in the two Sections A.1 and A.2 are related by

NULL( lim
∆t→0

1
∆t

[
W

T
INTWINT

]
) = NULL(WT

W). (A.25)

Proof: The proof is divided into three parts: first we show that the “Integral Method” can be

expressed using discrete summations, secondly we show that each of these intermediate steps

is basically differentiation with a larger ∆t and, finally, we show that the null spaces of the two

methods are related by (A.25).

For simplicity we chose the trapezoidal integration method described in (A.23).

W̃
⏐⏐⏐
ti
=Ŵ

⏐⏐⏐
ti
+

i

∑
j=1

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]∆t
2

(A.26)

We can express the first term on the right hand side which is defined in (A.12) as a sum of

intermediate time steps defined as

Ŵ
⏐⏐⏐
ti
=

i

∑
j=1

(

W
⏐⏐⏐
tj

, (A.27)
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where

(

W
⏐⏐⏐
tj
=

⎡⎢⎢⎢⎢⎢⎢⎣

w̆11 0 0 0 0 0 . . . 0
0 w̆22 0 0 0 0 . . . 0
0 0 w̆33 0 0 0 . . . 0
0 0 0 w̆44 0 0 . . . 0
0 0 0 0 w̆55 0 . . . 0
0 0 0 0 0 w̆66 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.28)

and

w̆11 = u(tj)− u(tj−1) w̆44 = a(tj)− a(tj−1) (A.29)

w̆22 = v(tj)− v(tj−1) w̆55 = b(tj)− b(tj−1) (A.30)

w̆33 = w(tj)− w(tj−1) w̆66 = c(tj)− c(tj−1). (A.31)

This is true by inspection. For example the entry in the first row and column is

Ŵ11

⏐⏐⏐
ti
=[u(ti)− u(ti−1)] + [u(ti−1)− u(ti−2)] + . . . + [u(t2)− u(t1)] + [u(t1)− u(t0)] (A.32)

=u(ti)− u(t0). (A.33)

For convenience we define ˜̃W j as

˜̃W j =

(

W
⏐⏐⏐
tj
+

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]∆t
2

(A.34)

=
∫ tj

tj−1
W(ν̇, ω̇, ν, ω, η, γ) dt. (A.35)

Substituting in (A.34) and (A.27) into (A.23) yields

W̃
⏐⏐⏐
ti
=

i

∑
j=1

(

W
⏐⏐⏐
tj
+

i

∑
j=1

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]∆t
2

(A.36)

=
i

∑
j=1

[

(

W
⏐⏐⏐
tj
+

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]∆t
2

]
(A.37)

=
i

∑
j=1

˜̃W j. (A.38)
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We note that

W̃
⏐⏐⏐
ti
= ˜̃W i + W̃

⏐⏐⏐
ti−1

. (A.39)

Since each regressor matrix is now expressed as finite sum, we will see that when divided by

an arbitrarily small ∆t each summand is actually equivalent to the regressor matrix defined in

(A.4). This is possible because the left hand side is 0 in the NBLS problem. Substitute (A.38)

into (A.23) and note that tj = tj−1 + ∆t. The choice of ∆t is arbitrarily small and thus we can

take the limit of both sides and use the Fundamental Theorem of Calculus which states that

lim∆t→0
1

∆t [
∫ tj

tj−1 ẋ(t)dt] = ẋ(tj). These steps result in

0 =

[ i

∑
j=1

˜̃W j

]
θp (A.40)

lim
∆t→0

1
∆t

0 = lim
∆t→0

1
∆t

[ i

∑
j=1

˜̃W j

]
θp (A.41)

0 = lim
∆t→0

[
i

∑
j=1

[
1

∆t

[

(

W
⏐⏐⏐
tj
+

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]∆t
2

]]]
θp (A.42)

0 = lim
∆t→0

[
i

∑
j=1

[
1

∆t

(

W
⏐⏐⏐
tj
+

[
W

⏐⏐⏐
ν̇,ω̇=0, t=tj−1

+ W
⏐⏐⏐
ν̇,ω̇=0, t=tj

]1
2

]]
θp (A.43)

0 =
i

∑
j=1

[
lim

∆t→0

1
∆t

[ ∫ tj

tj−1
W(ν̇, ω̇, ν, ω, η, γ)

⏐⏐⏐
tj

dt
]]

θp (A.44)

0 =
i

∑
j=1

[
W(ν̇, ω̇, ν, ω, η, γ)

⏐⏐⏐
tj

]
θp. (A.45)
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We use (A.39) and note that W̃
⏐⏐⏐
t0
= 0 to express WINT as

WINT =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

W̃
⏐⏐⏐
t1

W̃
⏐⏐⏐
t2

W̃
⏐⏐⏐
t3

...

W̃
⏐⏐⏐
ti

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

˜̃W1˜̃W2 + W̃
⏐⏐⏐
t1˜̃W3 + W̃
⏐⏐⏐
t2

...˜̃W i + W̃
⏐⏐⏐
ti−1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

˜̃W1˜̃W2 +
˜̃W1˜̃W3 +

˜̃W2 +
˜̃W1

...˜̃W i +
˜̃W i−1 + . . . ˜̃W1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
i = 1, 2, 3, . . . n. (A.46)

We can use the structure in (A.46) to rewrite WINT as

WINT =

⎡⎢⎢⎢⎢⎢⎣
I6 0 0 . . . 0
I6 I6 0 . . . 0
I6 I6 I6 . . . 0
...

...
...

. . . 0
I6 I6 I6 . . . I6

⎤⎥⎥⎥⎥⎥⎦

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

˜̃W1˜̃W2˜̃W3
...˜̃W i

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(A.47)

=AW̃, (A.48)

where In is the n× n identity matrix. From [19] we note that

NULL(WT
INTWINT) = NULL(W̃

T
AT AW̃) = NULL(AW̃), (A.49)

and similarly

NULL(W̃
T

W̃) =NULL(W̃). (A.50)

Finally we need to show the following:

FACT: NULL(AW̃) = NULL(W̃)

PROOF: A is triangular with non zero entries on the diagonal thus all eigenvalues of A are

non zero and thus A is invertible. Let x ∈ NULL(AW̃) and therefore AW̃x = 0. Since A

is invertible A−1 AW̃x = A−10 → W̃x = 0 and x ∈ NULL(W̃). Therefore NULL(AW̃) ⊆

NULL(W̃). Now let x ∈ NULL(W̃) and thus AW̃x = A0 = 0 and therefore x ∈ NULL(AW̃) and

NULL(AW̃) ⊇ NULL(W̃). Since NULL(AW̃) ⊆ NULL(W̃) and NULL(AW̃) ⊇ NULL(W̃)

then NULL(AW̃) = NULL(W̃)
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As a consequence we can say that

NULL(WT
INTWINT) = NULL(AW̃) = NULL(W̃) = NULL(W̃

T
W̃). (A.51)

Therefore we use the argument regarding arbitrarily small time steps as described in (A.45) to

show that

NULL( lim
∆t→0

1
∆t

[
W̃

]
) = NULL(W). (A.52)

This completes the proof. The implication is that with arbitrary
1

∆t
,

NULL(WT
INTWINT) = NULL(W̃

T
W̃) ≈ NULL(WT

W), (A.53)

or the subspaces are equivalent.
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