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Abstract

Direct numerical simulations (DNS) are used to examine the flow of heavy drops

suspended in vertical channels. The non-dimensional numbers are selected so that the

drops stay nearly spherical. The imposed pressure gradient balances with the shear

force and the weight of the mixture, and the system reaches hydrostatic equilibrium.

Based on this force balance, the void fraction across the channel can be predicted. We

used the wall shear stress and the non-dimensional root-mean-square drop distance

from the centerline to determine when the system reaches a steady state. The average

void fraction from the computational results matches our predicted model. For

downflow, the drops are pushed to the wall and form a drop-rich region of one drop

diameter thickness. For upflow, the heavy drops cluster at the center of the channel,

and form a drop-free region near the wall.
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Chapter 1

Introduction

Droplet multiphase flows are encountered in several important industrial processes.

One of the common applications is the oil-water separation system. Gravity-based oil

separator has been investigated both theoretically and experimentally in [1]. Because

the density difference between oil drops and water is generally small, the efficiency is

low relying on gravity separation followed by skimming. The oil drops are suspended

in the water, so here we examine the distribution of the nearly spherical heavy drops in

vertical channels with two different flow directions, determined by the imposed pressure

gradient. We compare our results with the analytical model, originally developed for

bubbly flows in vertical channels by Lu et al.[2].

Several numerical and experimental studies of droplet channel flows have been

completed. Numerical simulations were is used to investigate the effect of different

sizes on the segregation behavior for binary dispersed suspensions of fluid droplets

[3]. The deformation of oil droplets adhering to channel walls was studied in [4].

Coalescence and breakup of deformable droplets dispersed in a fully turbulent channel

flow were studied with a phase-field model [5], and [6] examined the droplet breakup

and deformation in a statistically stationary homogeneous and isotropic turbulent

flows.

The effect of the flow directions on the bubble distribution in channel flows, and
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a few have also been investigated. The lift force rearranges the bubble distribution

in order to balance the imposed pressure gradient [7]. Laminar bubbly flows at a

steady state is well predicted by a relatively simple model in a vertical channel [2].

The behavior of bubbles in the turbulent upflow has also been studied using DNS

[8], and the results from DNS and a two-fluid model are compared for bubbly flows

in a two-dimensional channel [9]. Statistical learning is used to generate closure

relationships for a simplified two-fluid model for bubbly flows [10].

Other authors have worked on droplet three-phase flows. A level set method has

been used to study drops in three-fluid stratified flows [11], also a Smooth Particle

Hydrodynamics method has been used to analyze the dynamics of a droplet on the

interface between two different immiscible fluids [12].
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Chapter 2

Numerical Method and Problem
Specification

The channel is vertical with a width of W . The gravity acceleration g is downward so

the heavy drops fall relative to the surrounding liquid. The computational domain

is rectangular, with periodic boundaries in the streamwise (vertical) direction and

non-slip wall boundaries in the horizontal direction.

To solve the fluid field at a given time and location, we consider an incompressible

flow with two phases, governed by the Navier Stokes and continuity equations

∂ρu

∂t
+ ∇ρuu = −∇p + (ρ − ρavg)g+ ∇ · µ(∇u+ ∇uT ) +fσ and ∇ ·u = 0. (2.1)

Here, u is the velocity, p is the pressure, µ is the viscosity, ρ is the density, and fσ is

the surface tension term.

We use the analytical model of bubbly flow in vertical channels introduced in [2].

Starting with the force balance

dτ(x)
dx

− dp

dy
− ρ(x)g = 0, (2.2)

where τ(x) is the shear stress. The shear force is balanced by the imposed pressure

gradient and the weight of the mixture. The local density is determined by the void

fraction of the drops ρ(ε), ρ = ερd + (1− ε)ρl, and the average density of the domain is

defined by ρav = εavρd + (1 − εav)ρl. The subscripts d and l refer to the drop and the
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liquid phases. The sum of the mixture weight and pressure gradient, β = dp/dy +ρavg,

determines the flow direction. β > 0 results in a downflow and β < 0 creates upflow.

With these relations, Eq. (2.2) becomes,

dτ(x)
dx

− β − ∆ρ(εav − ε(x))g = 0, (2.3)

where ∆ρd = ρl − ρ is a negative value because the drops are heavier than the liquid.

We assume the shear vanishes in the center region of the channel, so the void fraction

in the center εc is given by

εc = εav + β

g∆ρ
. (2.4)

Based on this model, for downflow (β > 0), the void fraction in the center is smaller

than the average because the drops accumulates near the wall region. For upflow

(β < 0), drops are pushed toward the center and the void fraction in there is larger.

For downflow, we assume that the thickness of the drop-rich region near the wall is

about one drop diameter dd. From mass conservation, εavW = εc(W − 2dd) + 2εwdd,

and by using Eq. (2.4), we have

εw = εav − β

g∆ρ
( W

2dd

− 1). (2.5)

For upflow, drops accumulate in the center region and a drop-free region is formed

near the wall. The thickness of the drop-free region is εavW = εc(W − 2δ), and

substituting into Eq. (2.4) yields

δ = βW

2(β + εavg∆ρ) . (2.6)

At steady state, the wall shear balance the net pressure gradient for both downflow

and upflow, so

τw = −βW

2 . (2.7)

To examine if the flow reaches a steady state, we use this wall shear equation,

together with the root mean square of drops distance d to the channel centerline,

non-dimensionalized by d/(W
2 ).
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The non-dimensional numbers used in multiphase systems with drops are the

Morton and the Eötvös numbers,

M = ∆ρgµ4

ρ2
l σ

3 Eo = ∆ρgd2

σ
. (2.8)
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Chapter 3

Results

We examine the motion of drops in a channel of size 5 × 10. To minimize the

computational cost, we used a 256 × 512 grid since the grid refinement studies have

shown that the results on this grid accurately describe the system. The drops have a

diameter of dd = 0.4, and the surface tension is σd = 0.0002. The density of the heavy

drops is twice that of the liquid, and the drop viscosity is one-twentieth of the liquid.

50 drops are included within the domain with Eo = 0.3 and M = 2.9 × 10−6. The

sign of β determines the flow direction. The magnitude of β should be adequately

small so the drops will not coalescence. We set β = 10−5 for downflow and β = −10−5

for upflow. With these parameters, we initiated the flow with a parabolic velocity

profile across the channel.

The drop distribution and streamline for downflow (left) and upflow (right) are

presented when the flow has reached a statistically steady state at time t = 9 × 104

(Figure 3-1). We examined the plots at different times, and found that the flow and

the drop distributions are similar. With different flow directions, it is obvious that the

shape and distribution of the drops are different. For downflow, the drops are pushed

toward the wall and slightly deform. For upflow, drops clusters in the center region

and drop-free regions are formed near the walls, and the drops stay nearly spherical.

For both cases, the velocity rapidly changes near the walls.
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Figure 3-1. The drop distribution and streamlines for the downflow (left) and for the
upflow (right).

We used two different methods to determine when the flow reaches the statistically

steady state. First, according to Eq. (2.7), the wall shear balance out with the sum

of the pressure gradient and the mixture weight across the channel. We average the

wall shear τW along the two non-slip walls. For both upflow and downflow, we see a

big jump of the averaged wall shear stress at the early stage because of the applied

parabolic velocity profile (Figure 3-2). The system reaches the statistically steady state

when the averaged wall shear stress fluctuates around the predicted value τw = −βW
2 .

Because downflow and upflow have opposite signs of β, we expect the predicted wall

shear stress for each flow to have the same magnitude but different signs.

Furthermore, to check whether the system is at the statistically steady state, we

used the non-dimensional root-mean-square (RMS) distance of drops distance from

the channel centerline (Figure 3-3). Downflow has a larger value of non-dimensional

RMS distance than the upflow, agreeing with our assumption that the drops gather

near the wall and are far away from the channel centerline. After a transient state,
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Figure 3-2. The averaged wall shear stress versus time for the downflow (left) and for
the upflow (right).

Figure 3-3. The non-dimensional root-mean-square distance of drops from the channel
centerline.

the non-dimensional RMS distance remains relatively constant at the stationary state.

The matching results of averaged wall shear stress and non-dimensional RMS distance

indicate the channel flow has reached the statistically steady state at a later time. We

chose t = 3 × 104 and average until t = 9 × 104 to compute the average steady state

quantities.

We calculate the average kinetic energy versus time for both cases (Figure 3-4).

The kinetic energy has a sharp increase at the initial transient state, and then remains

at nearly a small constant value. Comparing the averaged value of the kinetic energy
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Figure 3-4. The average kinetic energy versus time for upflow and downflow.

from t = 3 × 104 to t = 9 × 104, downflow has a value 18.8% higher than the upflow.

For flows with different directions, we applied the same magnitude with opposite signs

of β = dp/dy + ρavg, but the upflow has to consume more energy to overcome the

gravity, resulting in less average kinetic energy at the stationary state.

The average void fraction over the vertical direction of the channel by averaging

over the statistically steady state time from t = 3×104 to t = 9×104. We also average

the right-hand side and left-hand side of the average void fraction to make the profile

symmetric for flows in both directions. The void fraction versus non-dimensional

cross-stream coordinate is shown in Figure 3-5. The analytical models are presented as

red dashed lines. Overall, the predictions of the model fit the simulated void fraction

reasonably well for both flow directions. Ideally, the drops are clustered near the wall

region which is about one drop diameter thick for downflow. The simulated wall-region

is slightly offset from the predicted model because drops wobble in this region and

there is a minor gap of liquid between drops and walls. This gap pushes the drops

toward the center region slightly, and forms a transient region between the wall and

center region. For upflow, the theoretical model predicts that drops accumulate in

the channel center, and form a drop-free layer near the wall. The void fraction in the
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Figure 3-5. The averaged void fraction profile across the channel for downflow (left) and
dowflow (right).

Figure 3-6. The averaged drop and liquid vertical velocity across the channel at t = 9×104

for downflow (left) and upflow (right).

center εc is well predicted with small fluctuation. From the simulation, the wall-region

is not perfectly drop-free, which causes a small transient region as well.

The averaged drop and liquid vertical velocity across the channel, versus the

non-dimensional cross-stream coordinate at t = 9 × 104 for both flow directions is

shown in Figure 3-6. The solid line is the liquid velocity, and each circle denotes a

drop velocity at that non-dimensional location. It is obvious that most of the 50 drops

have a higher velocity than the surrounding fluid for the downflow, and lower velocity

for the upflow. The downflow velocity profile is slightly more symmetric than the

upflow profile.
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Figure 3-7. The time averaged drop and liquid vertical velocity across the channel
for downflow (left) and upflow (right). The results are averaged from t = 3 × 104 to
t = 9 × 104

The vertical liquid velocity averaged over a period of time in the same way as the

void fraction is shown in Figure 3-5. We divide the channel into eight equal width

bins, and average the drop velocity for each bin which is presented by the red circles

(Figure 3-7). The drops and the liquid velocity are lower near the wall than in the

center because the wall shear slows down the flow. The drops fall relative to the

surrounding liquid, so drops have higher vertical velocity than liquid for downflow

and lower velocity for upflow. Both the drop and the liquid velocities are higher in

downflow than in upflow, and this result matches with the higher value of kinetic

energy in the downflow.
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Chapter 4

Conclusion

We use direct numerical simulation to examine droplet multiphase flow in a vertical

channel for two different flow directions caused by the imposed pressure gradient. To

determine whether the systems have reached a statistically steady state we have used

the averaged wall shear stress and the non-dimensional root-mean-square distance of

drops from the channel centerline. Both quantities indicate that the flow reaches a

stationary state after a sharp change during the initial transient state.

We also found that the time averaged kinetic energy is higher for the downflow

than the upflow after the flow approaches the steady state. These results correspond

with our time averaged vertical velocities of drops and liquid across the channel. We

then compare our results with the predictions of a simple theoretical model, originally

developed for bubbly multiphase flows. The theoretical void fraction models fits our

simulation results for both flow directions but with a small transient region between

the wall and the center regions. In the center region of the channel, the void fraction

is nearly uniform. In the wall regions, the drops are pushed toward the walls for

downflow and away from the wall for upflow.

The results provided a fundamental analysis of the distribution of drops suspended

in channel flows, and show that the distribution of drops is reasonably well predicted by

the theoretical model. Continued work will focus on combination of drop and bubble
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void fraction models, which will be helpful to analyze three-phase gas-liquid-liquid

system.
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Abstract

The dynamics of a three-phase gas-liquid-liquid multiphase system is examine by
direct numerical simulations. The system consists of a continuous liquid phase, buoy-
ant gas bubbles and smaller heavy drops that fall relative to the continuous liquid.
The computational domain is fully periodic and a force equal to the weight of the
mixture is added to keep it in place. The governing parameters are selected so that the
terminal Reynolds numbers of the bubbles and the drops are moderate and while the
effect of bubble deformability is examined by changing its surface tension, the surface
tension for the drops is sufficiently high so they do not deform. The dependency of
the slip velocities, the velocity fluctuations, as well as the distribution of the dispersed
phases, on the volume fraction of each phase are examined. It is found that while
the distribution of drops around a single three-dimensional bubble is uneven and de-
pends on its deformability, the distribution of drops around freely interacting bubbles
in two-dimensions is relatively uniform, for the parameters examine here.

1 Introduction

The dynamics of a three phase gas-liquid-liquid multiphase system, is examined by direct
numerical simulations, where the continuum equations describing fluid flows are solved
sufficiently accurately so that every length and time scale are fully resolved, for unsteady
systems. The system consists of a continuous liquid phase, buoyant gas bubbles that rise
and heavy drops that fall, relative to the continuous liquid. Three-phase gas-liquid-liquid
systems are found in many engineering applications. One of the more common one consists
of gas bubbles and oil drops in water as found in, for example, water management in the oil
industry and the separation of oil and grease from municipal and industrial waste water.
The density difference between oil and water is generally small, so separation relying on
gravity driven settling is slow. However, by injecting gas bubbles into the mixture that
stick to the oil drops and carry them to the top, the rate of separation can be greatly
increased. While the collision of bubbles and drops and their subsequent interactions, such
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as when an oil drop engulfs an air bubble, is critical to the efficiency of the process, here we
focus on the pre-collision stage where the drops do not stick to the bubbles. For a relatively
recent review of gas flotation see Saththasivam et al. [2016] and discussions of the capture
of an oil drop by a gas bubble can be found in Torza and Mason [1970], Moosai and Dawe
[2003], Yan et al. [2020], for example. Oil-water-gas flows are also found in many other
circumstances, such as in oil wells and pipeline (Yaqub et al. [2020]).

Numerical simulations, particularly direct numerical simulations, have come a long way
in the last two decades. Early simulations of many interacting bubbles can be found in
Bunner and Tryggvason [2002] who examined bubbles in initially quiescent liquid in fully
periodic domains, and more recent studies include Lu and Tryggvason [2013], du Cluzeau
et al. [2019] where the dynamics of bubbles in turbulent channel flows is examined. While
a large number of authors have examined the dynamics of two-phase flows, fully resolved
numerical simulations of three-phase systems are relatively rare and usually concerned
with systems different from the one considered here. Those include simulations of bubbles
and drops in minichannels using a volume of fluid method by Rajesh and Buwa [2018]; Li
et al. [2015] who use a level set method to study drops in two-layer stratified flows; and
Tofighi and Yildiz [2013] who examined the dynamics of a drop on the interface between
two different fluids, using Smooth Particle Hydrodynamics. The only studies that we have
found of the dynamics of fully resolved bubbles and drops are Dinariev and Evseev [2018]
who use a method that they refer to as density functional hydrodynamics. They present
several pictures of the interaction of a few bubbles with a few drops, but no quantitative
information.

While the focus here is on the interactions of buoyant bubbles with heavy drops, we
expect the dynamics before collision to be similar to the interaction of spherical solid parti-
cles with bubbles, such as in froth flotation for mineral processing and recycling of plastics,
where hydrophobic particles stick to bubbles and are carried to the top of the mixture and
removed (King [2012], Pita and Castilho. [2017]). Most simulations of such systems in-
volve considerable simplifications such as where the bubbles are fully resolved and the flow
around them but the solid phase modeled as point particles. van Sint Annaland et al. [2005]
simulated the motion of bubbles in initially quiescent flow using a front tracking method
to track the bubble surface but modeling the particles as point particles, with two-way
coupling. The bubbles were initially put in the lower part of the computational domain,
which contained a large number of particles and the simulations examined how particles
were transported in the wake of the bubbles, as they left the particle rich region. A similar
study was done by Liu and Luo [2018], who simulated the motion of one and two bubbles
and their interactions with point particles, using a VOF method to represent the bubble.
Those studies where, however, limited to two-dimensional flows. Other authors have fo-
cused on the interaction of a single bubble with point particles. Those include Lecrivain
et al. [2016] who captured the bubble by a phase field method and Bogner et al. [2018]
who used an LBM method. Liu and Schwarz [2009a,b] studied the influence of turbulence
on the interaction of several point particles with a single bubble, but used a k − ε models
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for the turbulence, rather than fully resolving the flow. In some cases, the bubbles are
also modeled as point particles, such as by Fayed and Ragab [2013] who simulated turbu-
lent flow with bubbles and solid particles that were both modeled as point particles using
one-way coupling where the disperse phases did not affect the carrier phase. Similarly, a
discrete element method has been used to examine the interaction of several point particles
with one bubble in Maxwell et al. [2012], Gao et al. [2014]. The only simulations that we
are aware of, where both the bubbles and the solid particles are resolved, are Baltussen
et al. [2013] and Sasic et al. [2014] who capture the bubbles by a volume-of-fluid (VOF)
method and use an immersed boundary method (IBM) for the solid particles. Modeling
of three phase systems using Euler-Euler models for the average flow are more common.
For bubbles and drops see, for example, Cazarez et al. [2010] and for bubbles and solid
particles see the extensive review by Wang et al. [2018].

2 Numerical Method and Problem Specification

We consider incompressible flow consisting of different fluids or phases, evolving in time,
governed by the Navier Stokes equations

∂ρu

∂t
+∇ρuu = −∇p+ (ρ− ρavg)g +∇ · µ(∇u +∇uT ) + fσ and ∇ · u = 0. (1)

Here, u is the velocity, p is the pressure, ρ is the density, µ is the viscosity, g is the gravity
acceleration and fσ is the surface tension term. Solving these equations accurately gives
the fully resolved flow field at any given time and spatial location. To identify the different
phases we define two index or marker functions, χg to identify the gas phase and χd to
identify the heavy droplet phase.

χg(x) =

{
0 in the liquid
1 in the bubbles ,

χd(x) =

{
0 in the liquid
1 in the drops.

(2)

The various flow quantities, such as density and viscosity can then be written as

φi = φl + (φi − φl)χi (3)

where φl is the property of the continuous liquid and i = g for the bubbles and i = d for the
drops. Surface tension is assigned to each interface point and is different for the bubbles
and the drops.

The governing equations are solved using an explicit second order finite volume projec-
tion method on a staggered fixed regular grid. The advection terms are approximated by a
QUICK upwind scheme and the viscous terms by a centered scheme. To update the marker
function, and thus the material properties, we represent the interfaces between different
fluids by connected marker points (usually called front) that move with the fluid velocity.
The marker function is then constructed from the location of the marker points. Surface
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Figure 1: A bubble and 12 drops at time 0 (left frame) and 100 for Eo = 2 (middle
frame)and Eo = 10 (right frame). The enstropy is shown in a plane cutting through the
center of the domain, for the later times.

tension is computed on the front and transferred to the fixed grid and added to the discrete
Navier-Stokes equations. For a detailed description of the method and various verification
tests, see Tryggvason et al. [2011].

The computational domain is a hexahedron in 3D and rectangle in 2D, with periodic
boundaries in all directions and to prevent the system from “falling” due to gravity, we
add a positive upwards force equal to the weight of the mixture (ρavgg).

The dynamics of systems with bubbles or drops is usually described by the Morton and
the Eötvös numbers, defined by

M =
∆ρgµ4

ρ2σ3
Eo =

∆ρgd2

σ
. (4)

For our system we need to specify those for both the bubbles and the drops. In addition,
the volume fraction is generally needed for multiphase systems and here, where we work
with bubbles and drops of specific sizes, we report the number of bubbles Nb and number
of drops Nd.

3 Results

3.1 One 3D bubble and several drops

We start by examining the motion of one relatively large bubble and several smaller drops
in a cubical computational domain with side lengths equal to 1, resolved by a 643 grid.
The bubbles have a diameter db = 0.4 and the droplets have diameters dd = 0.2. The
density and viscosity of the continuous fluid are ρl = 1.0 and µ = 0.009, respectively, for
the bubble we have ρd = 0.05 and µb = 0.0005 and for the drops ρd = 2.0 and µb = 0.016.
Surface tension is σd = 0.01 for the drop-liquid interface but the surface tension for the
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σ 0.04 0.01 0.00067 0.004 0.002
Eob 0.5 2.0 3.0 5.0 10.0
Mb 3.1× 10−8 2.0× 10−6 6.7× 10−6 3.1× 10−5 2.5× 10−4

Table 1: The surface tension for the bubbles and the corresponding Eob and Mb.

Figure 2: The slip velocity versus time for Eo = 2 and Nd = 12.

bubble-liquid interface is varied, resulting in different Morton and the Eötvös numbers as
shown in Table 1. While the grid resolution is relatively low, grid refinement studies have
confirmed that the results are reasonably accurate and correctly describe the dynamics of
the system. The number of drops is varied and we show results for Nd = [12, 16, 20]. The
simulations were run up to time 100, at which time the bubble had passes about twenty
times through the computational domain.

Figure 1 shows the bubble and twelve drops at time zero and time 100 for Eo = 2.0
and Eo = 10.0. For the lower Eötvös number the bubble deforms only slightly as it rises
but for the higher one more deformation are seen. The drops remain essentially spherical.
The results for Eo = 0.5 are similar to the Eo = 2.0 case and the Eo = 5.0 results fall
in-between the Eo = 2.0 and the Eo = 10.0 case. In addition to the bubble and the drops,
the enstropy (ω · ω) is plotted in a plane cutting through the middle of the domain. The
highest values are ahead and behind the bubble spanning the region between the bubble
in one period and the next one, suggesting it is the wake of the bubbles that produces the
strongest vorticity.

The velocity of the bubble and the drops are plotted versus time for Eo = 2.0 and
Nd = 12 in figure 1. The bubble wobbles slightly as it rises as is seen in the nearly periodic
oscillations in the rise velocity. For the drops we plot the average velocity, which is negative
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Figure 3: The slip velocity versus bubble Eötvös number for Nd = 12 (left) and versus
number of drops for Eo = 2 (right).

Figure 4: The average kinetic energy versus time for Nd = 12 and several Eötvös numbers
(left). The average kinetic energy versus the number of drops Nd for Eo = 2.0.

21



and relatively steady. After the initial transient the system reaches an approximately
stationary state where the average motion does not change. When we compute average
steady state quantities for the system (shown below) we start at time t = 50 and average
until the last time simulated (t = 100). Results for other bubble Eötvös numbers and
different number of drops are similar.

The slip velocity between the bubble and the continuous liquid and between the heavy
drops and the continuous liquid averaged over time after the systems reaches an approxi-
mate stationary state are shown in figure 3(a) versus Eötvös number of the bubble (Eob)
and Nd = 12. It is clear that while the droplet velocity remains nearly unchanged, the
bubble slows down slightly as it becomes more deformable, although the decrease is rela-
tively small. Figure 3(b) shows the averaged rise velocity for different numbers of drops
for Eo = 2.0 and while the bubble velocity is only minimally affected, the velocity of the
drops decreases slightly as their number is increased.

In figure 4 we examine the velocity fluctuations in the liquid by plotting the kinetic
energy versus time for four Eötvös numbers on the left and the average kinetic energy versus
number of drops for Eo = 2 in the right frame. In all cases we see that after an initial
sharp rise, the kinetic energy remains relatively constant and after averaging over time the
kinetic energy shows only a very weak dependency on the number of drops. Similar results
are seen for other Eötvös numbers.

One of the main questions in many applications of disperse three phase flows is how
the drops (or solids) and the bubbles interact. In wastewater remediation the efficiency on
the process depends critically on the bubbles colliding with and capturing droplets, and
the same is true for flotation in mineral processing, where the drops are replaced by solid
particles. To examine how the droplets are distributed around the bubble, we show the
angular and radial location of droplets with respect to the bubble in figure 6 at twenty
equispaced times, for twelve drops (Nd = 12). Data for Eo = 0.5 are shown on the left and
for Eo = 10 on the right. In both cases the drops move past the bubble, with essentially no
drops directly ahead or behind the bubble, but for the nearly spherical bubble the drops
are clustered in a relatively narrow column that almost touches the bubble since the sum
of the bubble and drop radii is Rb+Rd = 0.3. For the more deformable bubble the column
is more spread out and we see more drops closer to the centerline in front of the bubble.
Since the high Eo bubble becomes relatively “flat” as it rises, some of the drops in the
front get close its center.

To examine the droplet distribution in more detail, we show the weighted average radial
and angular distribution in figure 6. Since the volume of a torus around the bubble depends
on the distance from the centerline, we divide the average number of drops in a volume
element by the distance from the centerline. To produce a continuous curve, we apply
kernel smoothing, where the width of the kernel is selected by trial and error. The left
frame shows the radial distribution, averaged over the azimuthal direction. For the lowest
Eo there is a distinct maximum at r = 0.3, as also seen in figure 5 and for the highest
Eo the distribution reaches close to the origin, corresponding to the drops ahead and close
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Figure 5: The relative location of the drops for 20 time samples for Nd = 12. Eo = 0.5 on
the right and Eo = 10 on the left.

Figure 6: The angular average pair distribution function versus distance from the bubble
center (left) and radially average pair distribution function versus angle, measured from
the top of the bubble (right).
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Figure 7: The probability that the relative tangential (left) and radial (right)velocities of
the drops next to the bubble are positive, for Eo = 2.0 and different number of drops.

to the bubble. The angular distribution, averaged for r < 0.5 is shown in the right frame
and it is clear that for the lower Eos the distribution is highest at around θ = π/5 then
gradually deceasing but with a peak at around θ = 4π/5. At the poles we see very low
values, consistent with the left hand side of figure 5. For the highest Eo the distribution is
more uniform, but while there is a low value at the back, the value at θ = 0 is significantly
higher than for the other cases.

In figure 7 we examine the relative velocity between the bubble and the drops by
plotting the probability that the relative tangential velocity (left frame) and the relative
radial (right frame) velocity are positive, following Bunner and Tryggvason [2002]. The
tangential velocity is taken to be positive if the drop is moving towards the back of the
bubble and the radial velocities is positive if the drops move away from the bubble. In
all cases the plot on the left shows that the drops slide along the bubble surface from the
front to the back, as expected. Similarly, the plot on the right shows that the drops are
likely to be moving away from the bubble near its back. The results for the fewest drops
(Nd = 12) are slightly different than for the larger numbers, showing a dip just below the
equator for the tangential velocities and a rapid rise of the probability that the drops are
moving away for the radial velocities.

3.2 Several bubbles and drops in 2D flows

While examination of the interaction of several drops with one bubble in a “unit cell”
allows us to study some aspect of the system, in real systems we expect to have several
bubbles and several drops. While we have not examined the case of many bubbles and
many drops in fully three-dimensional flows yet, we have done a few simulations of two-
dimensional flows with four large bubbles and several smaller drops. The parameters the
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Figure 8: The bubbles and drops, along with a few streamlines, at t = 500 from two
simulations of four large bubbles and sixteen small drops. For the bubbles Eob = 1 in the
left frame and Eob = 3 in the right frame.

same as in the previous section and the bubble surface tension is varied to give different
Eötvös and Morton numbers. The simulations are run up to time t = 1000 at which
times the bubbles have moved fifty times through the domain, on the average. Figure 8
shows the solution at t = 500, for Eob = 1.0 (left frame) and Eob = 30 (right frame).
In addition to showing the bubbles and the drops, we also show a few streamlines in a
stationary frame of reference. An examination of those plots, as well as others at different
times, show that overall the flows are relatively similar. Both the bubbles are the drops are
distributed throughout the domain, although small clusters of drops are often seen, such as
here. Similarly, although sometime the bubbles collide with each other, persistent clusters
or “streams” as sometimes found for deformable bubbles in fully three-dimensional flows,
due to the differences in lift on a spherical and deformable bubbles (Bunner and Tryggvason
[2003], Ervin and Tryggvason [1997]), are not seen. We also note that the flow field consists
of relatively large regions of recirculating flows, as generally seen for two-dimensional flows,
including those with bubblys (Esmaeeli and Tryggvason [1996]).

The slip velocity between the bubbles and the continuous liquid and the drops and the
continuous liquid, averaged over the different bubbles and the drops, is shown in figure 9
versus time for Eob = 1 (left frame) and the time average of the slip velocities is shown
in the right frame for Eob = 2, versus the number of drops Nd. The bubbles rise due to
buoyancy so their slip velocity is positive, while the drops are denser than the continuous
liquid and fall down with a negative slip velocity. The left frame shows that the flow
reaches a statistically stationary state very quickly and that the average bubble slip velocity
fluctuates greatly. This is presumably due to the relatively small size of the system, both
in terms of number of bubbles and domain size. However, even in a larger system where
the average over all the bubbles might be smaller, we still expect individual bubbles to
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Figure 9: Slip velocity for the bubbles the drops. The slip velocity versus time for Eob = 1
(left frame) and the time averaged slip velocity for Eob = 2 versus the number of drops Nb

(right frame).

move very unsteadily. The slip velocity of the drops fluctuates less, in part because there
are more of them so the average is better converged. As the number of drops increases,
the density of the liquid mixture (continuous liquid and drops) increases so the bubble slip
velocity increases slightly due to buoyancy, whereas the average drop slip velocity decreases.
Plots of the slip velocity versus Eob for a fixed Nb show essentially no dependency on Eo.
Although the flow reaches a stationary state quickly, the time average in the right frame
has been computed between time t = 500 and t = 1000, using a time increment of ∆t = 5.
The averages discussed below have all been computed in the same way.

The time average of the kinetic energy of the continuous liquid is plotted in figure
10 versus Eob for Nd = 16 (left frame) and versus Nd for Eob = 2 in the right frame.
The dependency on the Eötvös number is relatively weak, although it increases slightly
for the most deformable bubbles. As the number of drops is increased, the kinetic energy
first increases slightly but eventually it decreases as the drop volume fraction becomes
sufficiently high to hinder their motion.

We have also examined the distribution of drops around each bubble in some detail.
Figure 11 shows the locations of drops with respect to the centers of the bubbles at twenty
evenly spaced times between t = 500 and t = 1000, for Eob = 1 on the left of the symmetry
axis and for Eob = 3 on the right. It is clear that the droplets are distributed relatively
uniformly around the bubbles, although there is a small region at the back with few drops,
and unlike for the single three-dimensional bubble, there is little dependency on the Eötvös
number, except the drops get closer to the more deformable bubble at the front. This is
borne out by a more detailed analysis, such as by examining the radial distributions of the
drops, shown on the right, for different Eob and 16 drops. Here the droplet distribution in
the left frame has been smoothed using a kernel function, as done in figure 5, except that for
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Figure 10: The kinetic energy of the liquid versus the Eötvös numbers for Nd = 16 (left
frame) and versus the number of drops for Eob = 2 (right frame).

two-dimensional flow no volume correction to account for the azimuthal direction is needed.
It is clear that first of all the distribution becomes relatively uniform immediately outside
the bubble and that there are very little differences between the different Eötvös numbers.
Similar plots for the angular distribution also show essentially uniform distribution that
does not depend on Eob or Nb.

We note that for the two-dimensional flows we have examined a much smaller range of
Eötvös number then for the three-dimensional ones because at larger values the bubbles
break apart, partly because of the other bubbles and also because the velocity perturbations
caused by each bubble decay much slower than in three-dimensions so the interactions are
more intense.

4 Conclusions

We have examined the dynamics of a three phase system where buoyant bubbles and heavy
drops move in a continuous liquid, focusing on the dynamics of relatively small systems
where the drops do not collide and stick to or engulf the bubbles. For one bubble in
three-dimensional flow the results show that bubble deformability has strong impact on
the dynamics and the distribution of drops around the bubble, but results for a few two-
dimensional bubbles show little effect of deformability and that the drops are relatively
uniformly distributed with respect to the bubbles, for the parameters examined. The
number of drops does, however, have some impact on the slip velocity between the bubbles
and the drops and the continuous liquid. Examining the dynamics for a system with many
freely interacting three-dimensional bubbles should cast more light on the dynamics of
larger systems.
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Figure 11: The location of drops with respect to bubble centers. The drops at several times
are shown in the left frame for Eob = 1 (blue) and Eob = 3 (red). The radial distribution,
averaged around the bubble is shown on the right, for three Eötvös numbers.
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