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ABSTRACT 

 The motivation of the current study is to investigate the Magnus effect with numerical 

simulations to answer fundamental questions in two different applications: baseball 

aerodynamics and rotating cylinders, also known as Flettner rotors. 

 In baseball and many other ball sports, the Magnus effect – the movement of balls in 

flight due to their rotation – is fundamental to the strategy and competition of the game. 

However, the current understanding of the aerodynamics of baseball is incomplete, and many 

fundamental questions about the physics of baseball do not have clear answers – namely, what is 

the effect of the baseball seam on the flight of pitched and batted balls. In this study, the seam is 

investigated for its effect on flows past rotating spheres, along with the spin orientation and spin 

rate, to elucidate the seam’s role in the flight of baseballs. A lateral “non-Magnus” force is found 

to exist depending on the ball’s spin orientations and the height of the seam, leading to 

substantial deviations in the path of pitched baseballs. The implications of these findings for 

baseball competition are briefly discussed. 

 The second portion of this study explores modifications to Flettner rotors and considers 

their applications. First, active flow control via localized surface suction is simulated for three-

dimensional cylinders and found to significantly enhance the aerodynamics performance of 

Flettner rotors. Second, rotating cylinders in shear flow with tapered profiles are simulated and 

compared to non-tapered cylinders, with a brief design study investigating their utility as a 

propulsion mechanism for a small unmanned aircraft. 

 

Primary Reader and Advisor:  Rajat Mittal 

Secondary Reader:   Jung-Hee Seo  
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CHAPTER 1.  INTRODUCTION 

The force generated on a rotating cylindrical body in cross flow is a widely observed 

phenomenon that is fundamental to many fluid dynamics applications. This effect has been 

observed and investigated by scientists as early as Isaac Newton, who noted the tendency of tennis 

balls to move along a curved path when struck with spin (Newton, 1671). Lord Rayleigh later 

attributed the first explanation of this effect to the Gustav Magnus; thus, the phenomenon became 

known as the Magnus effect. In general, this effect is understood to be caused by asymmetric 

boundary layer separation on rotating bodies. Boundary layer separation occurs further upstream 

on the side of the body moving against the flow, and further downstream on the side assisting the 

flow. The wake is then redirected towards the side of the body moving against the flow, yielding 

a deflection toward the opposite side. Common engineering applications of the Magnus effect 

include the spinning of guided missiles (Sturek et al., 1978), particle-laden flows in which small 

particles are often modeled as spheres (Wu et al., 2008; Liu & Prosperetti, 2010), as well as ships 

and aircraft that can leverage this force to generate thrust via spinning rotors (Seifert, 2012). 

Perhaps the most readily observable occurrence of this phenomenon is in ball sports, 

including tennis, cricket, soccer, golf, and baseball, among other sports. In these sports, players 

can tactically manipulate the spin of balls to generate deflections in the ball’s trajectory, producing 

a wide variety of outcomes. In tennis, players leverage “top spin” to generate a downwards force 

on the ball, enabling them to hit shots at higher velocities and making return shots more difficult 

for the opposition. In soccer, players may use “side spin” to generate a horizontal force, enabling 

the player to “curve” shots around defending players. In baseball, the Magnus effect is critical to 

both the pitching and hitting components of the game. Pitchers impart spin on a variety of types 

of pitches so as to create movement in different directions, such as the upward movement of a 
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“fastball”, the downward movement of a “curveball”, and the sideways movement of a “slider”. 

Additionally, batters may attempt to hit balls with backspin so as to increase the distance a batted 

ball will travel. Mehta and Pallis (2002) conducted a review comparing the specific aerodynamics 

of strategic elements in a range of sports, focusing on the effects of velocity, spin, and surface 

roughness of spinning and non-spinning balls. 

The boundary layer phenomenon is also understood to be relevant to the aerodynamics of 

sports balls, especially in the Reynolds number range of 40,000 to 400,000, at which most ball 

game are played (Mehta and Pallis, 2001). Smaller scale features on sports balls, such as the 

dimples on a golf ball, the seam on a baseball, or the patches on a soccer ball, are of the appropriate 

size to interact with the boundary layer in this Reynolds number range. This is especially apparent 

for non-spinning balls, sometimes called a “knuckleball”, where boundary layer asymmetries 

caused by surface features can cause random, chaotic motion of balls, a phenomenon not observed 

in smooth balls without these features. 

 

1.1 Baseball Aerodynamics 

In the game of baseball, aerodynamics and the Magnus effect are central to the strategy 

and outcomes of the game, arguably more so than any other sport. From the inception of the game 

in the mid-19th century, pitchers readily discovered that manipulating the leather on the surface of 

the ball, the stitching around the ball, and the spin could impact the trajectory of the ball in flight. 

This led to the development of a wide variety of pitches, including the curveball, screwball, 

spitball, and knuckleball, which manipulate the trajectories of pitched balls in different fashions in 

an attempt to deceive batters (The Neyer/James Guide to Pitchers, 2004). This practice was not 

without controversy; in the early 1870s, upon learning that one of the pitchers on the Harvard 
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baseball team was throwing curveballs, university president Charles W. Eliot reportedly threatened 

to shut down the program, stating, “I have heard that this year we won the championship because 

we have a pitcher who has a fine curve ball. I am further instructed that the purpose of the curve 

ball is to deliberately deceive the batte. Harvard is not in the business of teaching deception.” 

(Baseball, 1994) The “spitball” rose to prominence in the early-20th century, as pitchers discovered 

that saliva, Vaseline, mud, and many other “foreign substances” could be used to create 

asymmetries on the ball or allow it to “slip” out of the pitcher’s hand with minimal spin, creating 

an effect similar to a “knuckleball”. Eventually, the practice of “doctoring the baseball” was 

banned altogether by Major League Baseball in 1920. Although the practice of throwing curveballs 

had been around for several decades, there was still appreciable controversy over whether or not 

curving the path of the ball was physically possible, or a mere illusion. An experimental study 

published in the American Journal of Physics by Verwiebe (1942) concluded that balls “dropped 

more sharply than would be the case for free fall alone.” 

Briggs (1959) was among the first published works experimentally investigating and 

quantifying the aerodynamics of baseballs. In his study, Briggs tested the effect of spin rate and 

wind speed on the movement of baseball by dropping vertically spinning baseballs in a horizontal 

wind tunnel and measuring their lateral deflections. As shown in Fig 1-1, for fixed wind speeds, 

the lateral deflections were found to be approximately linear with spin rate. 
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Figure 1-1. Lateral deflection of a vertically spinning baseball in a horizontal windstream, from 

Briggs (1959) 

 

Watts and Sawyer (1975) performed investigations into the erratic motions of knuckleballs, 

or balls thrown with minimal spin. Significant fluctuations in the lateral force were observed 

depending on the orientation of the ball, concluding that the motion of knuckleballs is due to the 

very slow spin “changing the location of the roughness elements (strings), and thereby causing a 

nonsymmetric velocity distribution and a shifting of the wake.” Nathan (2008) performed further 

experimental investigations into the Magnus force on a baseball, and the implications for the total 

flight distance of batted balls. The lift coefficient 𝐶𝐿 was investigated for its dependence on the 

spin factor 𝑆 =
𝑅𝜔

𝑣
, where 𝑅 is the ball radius, 𝜔 is the rotation rate, and 𝑣 is the ball velocity. Fig 

1-2(a) shows experimental determinations of 𝐶𝐿 with varying 𝑆 from several studies, as well as 

proposed parameterizations. 𝐶𝐿 is found to be roughly linear with 𝑆, above a critical 𝑆 ≈ 0.1. Fig 

1-2(b) shows the variation of 𝐶𝐿 with 𝑣 for values of 𝑆 in the range of 0.15-0.25, which are common 
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to pitched baseballs. 𝐶𝐿 was found to not strongly depend on 𝑣 over the range 50-110 mph, or 𝑅𝑒 

from (1.1 − 2.4) × 105. 

 

 
(a) 

 
(b) 

Figure 1-2. (a) Experimental values of 𝐶𝐿 vs. spin parameter 𝑆, from Nathan (2008); (b) 

Experimental values of 𝐶𝐿 vs. 𝑣 for fixed 0.15 < 𝑆 < 0.25, from Nathan (2008) 

 

In recent years, optical and radar technologies have enabled significant advances in the 

understanding of the trajectories of baseballs in flight. Since as early as 2006, Major League 

Baseball systems have been equipped with ball tracking systems which can measure pitched ball 

quantities such as velocity, movement, spin axis, and spin rate, along with batted ball quantities 

such as exit velocity and launch angle. This new ability to measure the motion of baseballs in situ 
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for tens of thousands of events has enabled physicists to further examine the validity of many 

assumptions about baseball aerodynamics – namely, that the motion of baseballs is solely 

attributable to the Magnus effect. While the Magnus effect is undoubtedly the dominant force 

affecting the trajectory of spinning balls, observers have noted instances where a “Magnus model” 

does not fully explain the movement of pitches. 

Most of the early works on baseball aerodynamics (Briggs, 1959; Rex, 1985) conclude that 

for balls with sufficient spin, seam orientation does not significantly impact the trajectory; 

however, in cases where balls deviate from a Magnus model prediction, seam orientation is thought 

to potentially play an important role. Similar to the asymmetries observed by Watts and Ferrer 

(1975) for non-spinning balls, it is proposed that for spinning ball with certain seam orientations, 

the seam can be positioned in such a way to produce consistent boundary layer asymmetries to one 

side, resulting in lateral “non-Magnus” deflections. Smith and Smith (2020) leveraged particle 

image velocimetry (PIV), high-speed cameras, and optical pitch tracking technologies to 

experimentally investigate this effect. They find that seams positioned within a narrow range of 

orientations do indeed cause early (upstream) boundary layer separation to one side of the ball, 

leading to deflections perpendicular to the Magnus lift force, a phenomenon nicknamed the “Seam 

Shifted Wake”. 
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(a) 

 
(b) 

Figure 1-3. (a) PIV of leftward traveling baseball, with the seam the seam on the top side causing 

early boundary layer separation and deflecting the wake upward, from Smith and Smith (2020); 

(b) Proposed critical seam orientations relative to ball trajectory (green) compared to turbulent 

separation point with no seam present, from Smith and Smith (2020). 
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In addition to the “Seam Shifted Wake” effect, there are many other significant aspects of 

baseball aerodynamics still in question. The recent, dramatic surge in home run rates in Major 

League Baseball beginning around 2015 has drawn the attention of physicists, statisticians, and 

even casual fans interested in explaining large annual changes in baseball physics – with 

speculation that ball aerodynamic properties were intentionally modified by MLB so as to increase 

home run rates. A committee of scientists from various disciplines concluded that "…the 

aerodynamic properties (primarily the drag and lift coefficients) are a major contributing factor to 

the home run surge…” (Albert et al., 2018) Other current research topics include the effect of seam 

height and profile, the magnitude of spin “decay” throughout ball flight, and many others. 

 

1.2 FLOWS PAST ROTATING SPHERES 

In the broader fluid dynamics community, the flow past a sphere has been a key research 

topic for several decades, particularly because of the application to the transport of particles, which 

are commonly modeled as spheres. Rubinow and Keller (1961) investigated the Magnus lift force 

in the Stokes regime, deriving the expression 𝐶𝐿 = 2𝜔∗, where ω∗ =
ω𝐷

2𝑈∞
 is the dimensionless 

rotation rate (also denoted as 𝑆 or Ω∗). For Reynolds numbers (𝑅𝑒 =
𝑈∞𝐷

𝜈
) above the Stokes 

regime, extensive experimental testing has been done in the laminar, transitional, and turbulent 

regimes. One of the most extensively studied phenomena for flows past spheres is the drag crisis. 

Famously discovered by Eiffel (1912) in his laboratory in the Eiffel tower, the drag coefficient on 

a smooth sphere suddenly drops at 𝑅𝑒 = 2 − 3 × 105. For spheres with surface roughness, the 

drag crisis occurs at lower 𝑅𝑒, a discovery which explains the utility of dimples on a golf ball. 

Transversely rotating spheres – where the sphere’s axis of rotation is orthogonal to the free-

stream direction - have been the subject of numerous investigations by fluid dynamicists due to 
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the Magnus effect induced by these flows and its many engineering applications. Direct numerical 

simulations (DNS) have greatly helped to quantify and characterize these flows at various 

Reynolds numbers and dimensionless rotation rates. For moderate Reynolds numbers (𝑅𝑒 =

100 − 300), Kim (2009) and Giacobello et al. (2009) characterized different flow regimes and 

quantified force coefficients for Ω∗ ≤ 1.2. The flow was found to be steady at 𝑅𝑒 = 100 for all 

rotation rates, transitioning from steady to unsteady for higher 𝑅𝑒, depending on 𝜔∗, with unsteady 

flows characterized in either “vortex shedding” or “shear layer instability” regimes. Poon et al. 

(2014) further investigated transverse rotating spheres at higher 𝑅𝑒 of 500 − 1000, uncovering an 

additional “shear layer-stable foci” regime for high values of 𝜔∗. Figure 1-4, below, shows a map 

of the various unsteady flow regimes depending on 𝑅𝑒 and 𝜔∗. 

 

 

Figure 1-4. Different flow regimes for transversely rotating spheres, from Poon et al. (2014) 
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The flow regimes for streamwise rotating spheres – where the sphere’s axis of rotation aligns with 

the free-stream direction – have been studied mostly experimentally (Luthander & Rydberg, 1935; 

Hoskin, 1955; Schlichting, 1979). Kim and Choi (2002) performed numerical simulations of these 

flows at 𝑅𝑒 = 100, 250, and 300, varying 𝜔∗ from 0 − 1.0. Time-averaged lift values were found 

to be zero for all 𝜔∗ > 0, while the drag was found to increase monotonically with rotation speed. 

Poon et al. (2010) investigated the effect of changing the rotation axis 𝛼 from streamwise rotation 

(𝛼 = 0) to transverse rotation (𝛼 =
𝜋

2
) on laminar flow structures. Both 𝐶𝐿 and 𝐶𝐷 were found to 

increase monotonically with 𝛼 for all 𝑅𝑒, with the effect of 𝛼 increasing with 𝜔∗. At 𝑅𝑒 = 100, 

the flow was found to be steady and symmetric for all values of 𝜔∗, while for 𝑅𝑒 = 250 and 300, 

the wakes are either steady or unsteady depending on 𝛼 and 𝜔∗, generally transitioning from 

helical, “frozen” threads at low 𝛼 to planar symmetric flow at 𝛼 =
𝜋

2
, either with steady vortex 

threads or unsteady “hairpin” vortex shedding depending on 𝜔∗. While numerical studies have 

helped to illuminate the behavior of force coefficients and flow regimes with varying spin rates 

and rotation axes, there is still much left to investigate. Namely, there is a need for understanding 

of the flow behavior at higher Reynolds numbers in the transitional regime, as well as a more 

complete description of the effect of 𝛼 by sampling more values between 0 −
𝜋

2
. 

 

1.3 FLOWS PAST ROTATING CYLINDERS 

The experiments conducted by Gustav Magnus (1853) were performed on rotating 

cylinders. The experimental setup (Fig 1-5) consisted of a brass cylinder on bearings mounted to 

two arms, with the arms mounted to a freely rotating post. After spinning the cylinder with a string 

and directing a wind towards the cylinder, he observed that the cylinder would always move 



 11 

towards the side of the rotation assisting the flow; thus, this phenomenon was named the “Magnus 

effect”. 

Prandtl (1925) was among the first to quantify the Magnus effect for a rotating cylinder, 

where he proposed that the maximum lift for a spinning cylinder in a uniform flow is 4𝜋. Prandtl 

also studied the end conditions of the cylinder and demonstrated that end plates and higher aspect 

ratios (𝐿/𝐷) could increase the maximum theoretical lift. Anton Flettner, observing that the 

Magnus effect in a cross-wind would yield a much greater thrust than a sail of equivalent size, 

attempted to use spinning rotors as a means of ship propulsion, a concept later confirmed in wind 

tunnel tests of cylinders with endplates. This type of rotor on ships became known as a “Flettner 

rotor” and has been used on vessels as an energy-saving means of propulsion. Another major 

application of the Magnus force for rotating cylinders is aircraft propulsion, such as in the 

PlymouthA-A-2004 (Figure 1-6). However, these “Flettner airplanes” have not seen been as 

widely used as Flettner rotors on ships. 

 

 

Figure 1-5. Gustav Magnus’s experimental setup, conducted in 1853, from Borg (1986) 
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Figure 1-6. Plymouth A-A-2004 built in 1930 by anonymous inventors, from Deutches Museum 

- Archive 

 

Many experimental and computational studies have been done on rotating cylinder and 

cylinders with end plates, mainly seeking to quantify the effect of Reynolds number and velocity 

ratio (also called spin parameter) on stability and force coefficients. In a recent review paper, 

Seifert (2012) summarized much of the current understanding of the Magnus effect for rotating 

cylinders. The main factor influencing these flows in the velocity ratio 𝜔∗ =
𝜔𝐷

2𝑈∞
 (also called 𝛼, 

not to be confused with the rotation axis 𝛼 for a spinning sphere). For 0 ≤ 𝜔∗ ≤ 1.9 (Mittal and 

Kumar, 2003), a Kármán vortex street of periodic vortex shedding is observed, a behavior seen 

across a wide range of 𝑅𝑒 up to at least 𝑅𝑒 = 8 × 106 (Zdravkovich, 1997). In Mittal and Kumar’s 

(2003) study at 𝑅𝑒 = 200, the flow is found to be steady for 1.9 < 𝜔∗ ≤ 4.3, becoming unsteady 

for 4.3 < 𝜔∗ < 4.75, and again becoming unsteady at higher 𝜔∗. The onset of the second unsteady 

shedding regime is dependent on 𝑅𝑒, with shedding occurring at lower 𝜔∗ for increased 𝑅𝑒 

(Seifert, 2012). 

Numerous studies have looked at extensions of a simple rotating circular cylinder, 

including adding end plates, introducing surface roughness, changing aspect ratios, introducing 
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intermediate disks along the span of the cylinder, and rounding the ends of the cylinder. Active 

flow control, via surface suction or blowing, has been examined as a way to modify flows and 

enhance aerodynamic performance. Two main applications for surface suction on cylinders have 

been investigated: uniform suction across the entire cylinder surface via a porous wall, and 

localized or “slot” suction, where only part of the cylinder surface has a suction element. Hurley 

and Thwaites (1951) demonstrated that sufficient uniform surface suction can reduce drag and 

suppress vortex shedding. Fransson et al. (2004) demonstrated that even moderate amount of 

suction (≤ 5% of the free-stream velocity) can delay separation and narrow the wake of rotating 

cylinders, thus reducing the drag. Recently, Ramsay et al. (2019) demonstrated that non-uniform 

suction can be substantially more effective than uniform suction at eliminating boundary layer 

separation. Studies have also examined the effect of non-uniform cylinder geometries on flows 

past predominantly stationary cylinders. Gaster (1969) conducted water tunnel experiments of 

flows past slender cones at taper ratios of 18:1 and 36:1, and further studies of flow behind 

stationary tapered cylinders in uniform flow have been done by Papangelou (1992) and Anderson 

& Szewczyk (1995). However, there appears to be little work thus far on rotating tapered cylinders. 
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CHAPTER 2.  METHODS 

This chapter details the numerical flow solver used to perform the experiments in this work, 

as well as the specific simulation details and study parameters for both baseball simulations and 

Flettner rotor simulations. The flow solver used for this study is ViCar3D, a sharp-interface 

immersed boundary method code developed by Dr. Rajat Mittal’s research group (Mittal et al., 

2008; Seo and Mittal, 2011). This solver is robust in its ability to simulate a wide range of internal 

and external flows using simple, non-conforming Cartesian grids. This approach is particularly 

useful for moving boundary cases such as a rotating ball with a seam, it avoids the need for moving 

or highly deformed grids which need to be recomputed throughout the simulation (Mittal & 

Iaccarino, 2005). The flow solver and immersed boundary method are not original to this work, 

but a brief overview is included for completeness. 

 

2.1 VICAR3D FLOW SOLVER 

The governing equations for flows past rotating bodies are the three-dimensional, 

incompressible Navier-Stokes equations with constant properties given by 

∂ui

𝜕𝑥𝑖
= 0 

𝜕𝑢𝑖

𝜕𝑡
+

𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

1

ρ

∂p

∂xi
+ 𝜈

∂

𝜕𝑥𝑗
(
𝜕𝑢𝑖

𝜕𝑥𝑗
) 

where 𝑖; 𝑗 = 1,2,3, 𝑢𝑖 are the velocity components, 𝑝 is the pressure, 𝜌 is the fluid density, and 𝜈 

is the fluid kinematic viscosity. 

The Navier-Stokes equations are discretized on a Cartesian grid, with collocated storage of 

𝑝 and 𝑢𝑖 at the cell centers, and 𝑈𝑖 computed at face centers. Time integration of these equations 

is done using a three-step Van-Kan fractional step method (Van Kan, 1986). The first sub-step of 
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this method solves a modified momentum equation and obtains an intermediate velocity 𝑢∗. A 

second-order Adams-Bashforth scheme is used for the convection terms, with an implicit Crank-

Nicolson scheme for the diffusion terms, thereby eliminating the viscous stability constraint. The 

modified momentum equation solved at the cell nodes is 

𝑢𝑖
∗ − 𝑢𝑖

Δ𝑡
+

1

2
[3𝑁𝑖

𝑛 − 𝑁𝑖
𝑛−1] = −

1

𝜌

𝛿𝑝𝑛

𝛿𝑥𝑖
+

1

2
(𝐷𝑖

∗ + 𝐷𝑖
𝑛) 

where 𝑁𝑖 =
𝜕(𝑈𝑗𝑢𝑖)

𝜕𝑥𝑗
 is the convective term and 𝐷𝑖 = 𝜈 (

𝛿

𝛿𝑥𝑗
) (

𝛿𝑢𝑖

𝜕𝑥𝑗
) is the diffusion term, with 

𝛿

𝛿𝑥𝑖
 

denoting second-order central differencing. A second-order hybrid differencing scheme is used for 

the convective discretization. These equations are then solved with a line-SOR scheme (Anderson 

et al., 1984). Face center velocities 𝑈𝑖 are then computed by averaging across adjacent cell center 

values in orthogonal directions. Similar to a fully staggered arrangement, only the face velocity 

component normal to the cell face is used for computing volume flux through each cell. The 

averaging procedure for computing face velocities is as follows: 

𝑢𝑖̃ = 𝑢𝑖
∗ + Δ𝑡

1

𝜌
(

𝛿𝑝𝑛

𝛿𝑥𝑖
𝑛)

𝑐𝑐

 

𝑈1̃ = 𝛾𝑊𝑢1𝑃̃ + (1 − 𝛾𝑊)𝑢1𝑊̃ 

𝑈2̃ = 𝛾𝑆𝑢2𝑃̃ + (1 − 𝛾𝑆)𝑢2𝑆̃ 

3̃ = 𝛾𝐵𝑢3𝑃̃ + (1 − 𝛾𝐵)𝑢3𝐵̃ 

𝑈𝑖
∗ = 𝑈𝑖̃ − Δ𝑡

1

𝜌
(

𝛿𝑝𝑛

𝛿𝑥𝑖
𝑛)

𝑓𝑐

 

where 𝛾𝑊, γs, and 𝛾𝐵 are linear interpolation weights for the west, south, and back face velocity 

components, respectively. The subscripts “fc” and “cc” denote cell-center and face-center 

gradients, respectively. Figure 2-1 depicts the naming conventions and locations of velocity 

components for the spatial discretization of a fluid cell. 
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Figure 2-1. Naming conventions and positions of velocity components, from Mittal et al. (2008) 

 

The second sub-step uses the intermediate velocities computed in the first step to solve the 

pressure correction equation 

𝑢𝑖
𝑛+1 − 𝑢𝑖

∗

Δ𝑡
= −

1

𝜌

𝛿𝑝′

𝛿𝑥𝑖
 

which is solved with the condition that 𝑢𝑖
𝑛+1 is divergence free, to satisfy condition given in the 

mass equation. This leads to the following Poisson equation for the pressure correction, 

1

𝜌

𝛿

𝛿𝑥𝑖
(

𝛿𝑝′

𝛿𝑥𝑖
) =

1

Δ𝑡

𝛿𝑈𝑖
∗

𝛿𝑥𝑖
 

with a Neumann boundary condition for the pressure imposed on all boundaries. 

 To solve this pressure Poisson equation, a geometric multi-grid method is used (Bozkurttas 

et al., 2005) with a Gauss-Siedel line-SOR smoother (Zeigel et al., 1987). Because this solver 

utilizes non-conforming Cartesian grids, iterative solvers such as the geometric multi-grid method 

can be employed in a highly efficient manner with relatively little overhead memory requirements, 

a critical advantage over body-fitted, unstructured grids, which may require the use of less efficient 

or more complex multi-grid methods. Coupled with a Gauss-Siedel line-SOR smoother, this 
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geometric multi-grid method becomes highly efficient, nearly approaching the ideal theoretical 

performance in which the solution scales linearly with the number of grid points. 

 After solving the Poisson equation for the pressure, the velocity and pressure are updated 

in the final step as 

𝑝𝑛+1 = 𝑝𝑛 + 𝑝′ 

𝑢𝑖
𝑛+1 = 𝑢𝑖

∗ − Δ𝑡
1

𝜌
(

𝛿𝑝′

𝛿𝑥𝑖
)

𝑐𝑐

 

𝑈𝑖
𝑛+1 = 𝑈𝑖

∗ − Δ𝑡
1

𝜌
(

𝛿𝑝′

𝛿𝑥𝑖
)

𝑓𝑐

 

The separately updated face velocities satisfy discrete mass conservation to machine accuracy and 

are used for estimating the non-linear convective flux terms, which enforces geometric 

conservation for the convective flux. The concept of separately calculating face- and cell-center 

velocities was first introduced by Zang et al. (1994) and applied to Cartesian grid methods in Ye 

et al. (1999). This collocated scheme allows for simpler implementation compared to conventional 

staggered mesh schemes (Zang et al., 1994) and has good discrete kinetic energy properties (Felten 

and Lund, 2000), making it robust for relatively high Reynolds number flow with little to no 

artificial dissipation or upwinding. 

 

2.2 IMMERSED BOUNDARY METHOD 

 The immersed boundary method uses a multi-dimensional ghost-cell methodology to 

impose boundary conditions on either stationary or moving immersed boundaries. The internal 

boundary is represented by an unstructured mesh of triangular elements, then immersed within the 

Cartesian grid. Grid cells are then identified based on their node position as being either inside the 

solid body (“solid cells”) or inside the fluid domain (“fluid cells”). Cells whose nodes are inside 
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the solid body but are adjacent to at least one fluid cell are identified as “ghost cells”. Once all 

cells are identified, an appropriate boundary condition on the ghost cells must then be enforced. 

This is done by first detecting the “image point” of all ghost cells by projecting a line from the 

ghost cell node through the boundary intercept such that the line is normal to the boundary and the 

boundary intercept lies at the midpoint of this line. A representative depiction of a 2D immersed 

boundary is shown in Figure 2-2. 

 

 

Figure 2-2. 2D schematic of example immersed boundary. “GC” denotes ghost cell nodes, “BI” 

denotes boundary intercept points, and “IP” denotes image points. (From Mittal et al., 2008) 

 

 With the boundary intercept and image point computed for each ghost cell, a trilinear 

interpolation is used to express the general variable 𝜙 in eight nodes surrounding the image point, 

with the following form: 

𝜙(𝑥1, 𝑥2, 𝑥3) = 𝐶1𝑥1𝑥2𝑥3 + 𝐶2𝑥1𝑥2 + 𝐶3𝑥2𝑥3 + 𝐶4𝑥1𝑥3 + 𝐶5𝑥1 + 𝐶6𝑥2 + 𝐶7𝑥3 + 𝐶8 

The eight unknown coefficients, {𝐶}𝑇 = {𝐶1, 𝐶2, … , 𝐶8}, are determine by solving the inverse 

problem 
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{𝐶} = [𝑉]−1{𝜙} 

Here, [𝑉] is the Vandermonde matrix (Press et al., 1992), which has the form 

[𝑉] = [

𝑥1𝑥2𝑥3|1 𝑥1𝑥2|1 𝑥1𝑥3|1 𝑥2𝑥3|1 𝑥1|1 𝑥2|1 𝑥3|1 1

𝑥1𝑥2𝑥3|2 𝑥1𝑥2|2 𝑥1𝑥3|2 𝑥2𝑥3|2 𝑥1|2 𝑥2|2 𝑥3|2 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥1𝑥2𝑥3|8 𝑥1𝑥2|8 𝑥1𝑥3|8 𝑥2𝑥3|8 𝑥1|8 𝑥2|8 𝑥3|8 1

] 

With subscripts {1,2,3, … ,8} denoting the index of the cells surrounding the image point. The 

quantities at the image point are then calculated as 

𝜙𝐼𝑃 = ∑ 𝛽𝑖𝜙𝑖

8

𝑖=1

+ 𝑇. 𝐸. 

Here, 𝛽′𝑠 are weights that depend on the coordinates of the image point and 𝜙𝑖
′𝑠 are values at the 

neighboring cells. 

 With image point values determined, a central difference approximation is used along the 

line normal to the boundary intercept to implement Dirichlet and Neumann boundary conditions 

on the immersed boundary, with the following schemes 

𝜙𝐺𝐶 = 2𝜙𝐵𝐼 − 𝜙𝐼𝑃 

𝜙𝐺𝐶 = Δ𝑙𝑝 (
𝜕𝜙

𝜕𝑛
)

𝐵𝐼
+ 𝜙𝐼𝑃 

where Δ𝑙𝑝 is the length of the line segment between the ghost cell node and the image point. These 

can be rewritten in the following implicit form 

𝜙𝐺𝐶 + ∑ 𝛽𝑖𝜙𝑖

8

𝑖=1

= 2𝜙𝐵𝐼 

𝜙𝐺𝐶 − ∑ 𝛽𝑖𝜙𝑖

8

𝑖=1

= −Δ𝑙𝑝 (
𝜕𝜙

𝜕𝑛
)

𝐵𝐼
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These are solved with the governing equations to obtain the pressure and velocities. With this 

method, second-order accuracy in space and time is preserved both locally and globally (Mittal et 

al., 2008). 

 

2.3 SIMULATION SETUP – BASEBALL AERODYNAMICS 

A general schematic of the problem geometry and coordinates is shown in Figure 2-3. Note 

that the z-direction is the streamwise direction. The rotation axis is varied in the xz-plane. 

 

Figure 2-3. Problem schematic for rotating spheres and baseballs. The spin axis 𝛼 is 

varied in the 𝑥𝑧-plane, and measured from the +𝑧-axis. The spin 𝜔 is positive from a right-hand 

rule convention. 

 

Flows are solved on a structured Cartesian mesh with either a sphere or a baseball as the immersed 

boundary. The domain, boundary conditions, and simulation setup are kept identical between 

sphere and baseball simulations. A computational domain with size 13𝐷 × 13𝐷 × 25𝐷 is used, 

with 𝐷 the diameter of the sphere. Figure 2-4 shows a 3D isometric view of the computational 

domain used. 
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Figure 2-4. Computational domain used in simulations of rotating spheres/baseballs 

 

The domain is comprised of 8.6 million cells, with 160 points in the x- and y-directions, and 336 

points in the z-direction. Figure 2-5 shows a 2D cross-section of the computational domain in the 

yz-plane, through the center of the sphere. A fine-mesh region of size 3𝐷 × 3𝐷 × 4𝐷 is used near 

the sphere, with a uniform grid spacing Δ𝑥 = 𝐷/48. In the upstream and streamwise directions, 

the grid is stretched rapidly away from the fine-mesh region. Downstream of the sphere, the grid 

is slowly stretched using a hyperbolic tangent stretching function, maintaining a stretching ratio 

Δ𝑥𝑖+1

Δ𝑥𝑖
≈ 2.6%. Due to the “downward” deflection of the wake expected with the rotation of the 

sphere, the sphere is placed in the “upper-left” corner of the fine-mesh region, or 0.25𝐷 from the 

boundary of the fine-mesh region in both the y- and z-directions. The sphere is kept centered in the 

x-direction due to the expected symmetry about the yz-plane for transverse rotating spheres. Note 

that in the case of streamwise rotation, a “downward” deflection of the wake is no longer expected 

so the sphere is kept centered in the y-direction. 

 



 22 

 

Figure 2-5. 2D view (yz-plane) of overall computational domain (left) with inset (right) of fine 

mesh region near the sphere 

 

At the inlet (𝑧 = 0) as well as all side-walls, a Dirichlet boundary condition is imposed on the 

velocity, with 𝒖 = (0,0, 𝑈∞). A zero-gradient Neumann boundary condition is imposed on the 

velocity at the outlet (𝑧 = 25𝐷). On the internal boundary, no-slip and no-penetration boundary 

conditions are imposed. 

 While generating a sphere as an internal boundary is trivial, simulations of baseballs 

require external mesh generation. To best simulate actual baseball aerodynamics, a SolidWorks 

model of a baseball is first generated to the approximate geometry of a Major League Baseball 

(MLB) ball (Albert et al., 2018) (Figure 2-6a). While ideally the exact topography of an in-game 

MLB ball would be used, there are many secondary, small-scale features including gaps between 

individual stitches, stitching holes, and small irregularities that cannot reasonably be resolved by 

a numerical code. Because of this, the baseball model used in these simulations is somewhat 

simplified and smoothened to retain the first-order features of the baseball seam, namely the 

helical, winding path around the sphere, and the “bump” cross-sectional profile of the seam (Figure 

2-6b). 
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(a)       (b) 

Figure 2-6. (a) CAD of MLB baseball and (b) baseball geometry used in simulations 

 

In recent investigations, the mean seam height of MLB balls was found to be approximately .031 

inches (Albert et al., 2018). With a mean ball diameter of 2.85 inches, this corresponds to a seam 

height ℎ𝑠 = 𝐷/92. This seam height ratio is used in the present simulations, to retain as similar a 

ball geometry as possible to those used in real competition. The CAD model is then exported to 

an unstructured triangular mesh, with control points along the length of the seam, where it can be 

read into the ViCar3D flow solver. 

 Aside from the actual immersed boundary geometry, the imposition of the surface velocity 

due to rotation is the only difference in the computational setup between sphere and baseball 

simulations. Because a sphere is perfectly axisymmetric, a fixed sphere rotating about an axis 

through its center always occupies the same space. From a computational perspective, this means 

that the re-identification of solid- and fluid-cells is not necessary, and the rotation can instead be 

represented by a wall velocity boundary condition. The prescribed wall velocity takes the form 
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𝒖𝒔𝒑𝒉𝒆𝒓𝒆 = 𝝎 × 𝒓 

𝒖𝒔𝒑𝒉𝒆𝒓𝒆 = (−𝜔 cos 𝛼 𝑟𝑦, 𝜔 cos 𝛼 𝑟𝑥 − 𝜔 sin 𝛼 𝑟𝑧 , 𝜔 sin 𝛼 𝑟𝑦) 

where 𝒓 = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) is the vector extending from the center of the sphere to a general point on the 

surface. With the imposition of a wall velocity, the non-trivial step of re-identifying cells for a 

moving boundary is avoided, making simulations of spheres more efficient. For baseball 

simulations, since the seam makes the body non-axisymmetric, cells must be re-identified at each 

time step. The surface velocity is therefore not directly imposed in this case but imposed by the 

movement of the boundary. Since this rotation is perfectly cyclical, identification of solid- and 

fluid-cells is only necessary for the first full revolution. After the first full revolution, the previous 

identification of cells in the computational domain is “recycled”, expediting the movement of the 

boundary at late time steps for baseball simulations. 

 Simulations are performed at Reynolds numbers (𝑅𝑒 =
𝑈∞𝐷

𝜈
) of 500 and 1000, with 

dimensionless spin parameters (𝜔∗ =
𝜔𝐷

2𝑈∞
) of 0.25 and 0.5. The spin axis 𝛼 is varied from 0° to 

90°, or streamwise and transverse rotation, respectively. Two different seam heights are used: a 

“small” seam which is the height of a typical MLB ball (ℎ𝑠 = 𝐷/92), and a “large” seam which is 

twice as large (ℎ𝑠 = 𝐷/46). Simulations are run for 100 convective time units (𝜏 = 𝑡𝑈∞/𝐷), 

approximately 8 sphere revolutions for 𝜔∗ = 0.25, or 16 revolutions for 𝜔∗ = 0.5. 

 

2.4 SIMULATION SETUP – FLETTNER ROTORS 

2.4.1 SURFACE SUCTION 

 In the simulations of flows past rotating cylinders, two primary areas are investigated. First, 

simulations are performed investigating the effect of surface suction on 3D Flettner rotors in a 

uniform flow. Figure 2-7 shows a schematic of the problem setup. Similar to baseball 
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aerodynamics simulations, the spin ratio is defined as 𝜔∗ =
𝜔𝐷

2𝑈∞
. A radial surface velocity is 

applied on the cylinder in a suction zone which is 45° wide, located 120° clockwise from the front 

of the cylinder. The suction ratio 𝛾 =
𝑈𝑠𝑢𝑐𝑡𝑖𝑜𝑛

𝑈∞
 describes the strength of the suction in relation to the 

free-stream velocity. 

 

Figure 2-7. 2D schematic of the problem setup for a Flettner rotor with suction 

 

A computational domain with size 22𝐷 × 18𝐷 × 10𝐷, with 𝐷 the diameter of the cylinder. Figure 

2-8 shows a 3D isometric view of the computational domain used. 
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Figure 2-8. Computational domain used in Flettner rotor with suction simulations 

 

The domain is comprised of approximately 1.5 million cells, with 256 points in the 𝑥- and 𝑦-

directions, and 24 points in the 𝑧-direction. Figure 2-9 shows a cross-section of the computational 

domain in the 𝑥𝑦-plane. A fine-mesh region of size 3𝐷 × 3𝐷 in the 𝑥𝑦-plane is used near the 

cylinder, with uniform grid spacing Δ𝑥 = 𝐷/48. The grid is stretch rapidly upstream of the 

cylinder, and slowly stretched with a hyperbolic tangent function downstream of the cylinder to 

maintain a stretching ratio 
Δ𝑥𝑖+1

Δ𝑥𝑖
≈ 3.0%. Similar to the mesh used for sphere simulations, the 

cylinder is placed in the “upper-left” portion of the fine-mesh region, 0.75𝐷 from the edge of this 

region in the 𝑥- and 𝑦-directions. In the 𝑧-direction, along the length of the cylinder, a uniform 
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grid spacing is used. The length of the cylinder extends through the entirety of the 𝑧-direction, 

with an aspect ratio 
𝐿

𝐷
= 10. 

 

Figure 2-9. 2D view (xy-plane) of overall computational domain (left) with inset (right) of fine-

mesh region near the cylinder 

 

A uniform Dirichlet boundary condition is imposed on the inlet (𝑥 = 0), such that 𝒖 = (𝑈∞, 0,0). 

A zero-gradient Neumann boundary condition is imposed on the outlet (𝑥 = 22𝐷) and both walls 

in the 𝑦-direction (“bottom” and “top”). A symmetry boundary condition is applied on both walls 

in the 𝑧-direction (“front” and “back”), or both ends of the cylinder. On the surface of the cylinder, 

a wall boundary condition is imposed for the rotation, such that 

𝒖𝒄𝒚𝒍𝒊𝒏𝒅𝒆𝒓 = 𝝎 × 𝒓 

𝒖𝒄𝒚𝒍𝒊𝒏𝒅𝒆𝒓 = (−𝜔 ∙ 𝑟𝑦, 𝜔 ∙ 𝑟𝑥, 0) 
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where 𝒓 = (𝑟𝑥, 𝑟𝑦) is the vector extending from the center of the cylinder to a general point on the 

surface. A no-slip boundary condition is imposed everywhere on the surface except in the suction 

region, where 

𝒖𝒄𝒚𝒍𝒊𝒏𝒅𝒆𝒓 = (−
𝛾𝑈∞𝑟𝑥

𝑅
, −

𝛾𝑈∞𝑟𝑦

𝑅
, 0) 

where 𝛾 is the suction ratio and 𝑅 is the cylinder radius. 

 Simulations are performed at a Reynolds number of 200, with spin ratios from 2.5 to 3.5. 

The suction ratio 𝛾 is varied from 0 to 0.5. Simulations are run for 62.5 convective time units (𝜏 =

𝑡𝑈∞/𝐷), at which point the flow reaches steady state for all parameters considered. 

 

2.4.2 TAPERED CYLINDERS 

 The second type of Flettner rotor investigated in this study is the spanwise profile of the 

cylinder, or the “taper” of the cylinder. Figure 2-10a shows a schematic of the problem setup, with 

a “straight” cylinder (no variation in diameter along the length) and a “tapered” cylinder (diameter 

varies linearly along the length). The grid is identical to the one used in the surface suction 

simulations in the 𝑥- and 𝑦-directions but has 48 grid points instead of 24 in the 𝑧-direction, due 

to the increased three-dimensionality of flows with tapered cylinders. Additionally, a gap between 

the ends of the cylinder and the front and back walls is included, equal to 10% of the cylinder 

length, so the domain size is 12𝐷 in the 𝑧-direction. 
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Figure 2-10. (a) Shear inflow BC and cylinder profiles in 𝑥𝑧-plane, and gap between boundaries 

and cylinder ends (b) “Flettner drone” with cylinder rotating about a central point 

 

In this problem, instead of the uniform inflow velocity in the suction investigation, a shear inflow 

boundary condition is used, with velocity varying along the length of the cylinder. This is to 

simulate the effect of rotation, as shown in Figure 2-10b. Because the main quantities of interest 

are force coefficients, which are normalized be the quantity 
1

2
𝜌𝐴𝑈2, a shear inflow profile is used 

such that the integral quantity ∫ 𝑈 (𝑧∗ =
𝑧

𝐿
)

2

𝑑𝑧∗1

0
 is equal between a uniform inflow and a shear 

inflow. With the uniform inflow boundary condition given by 𝑈(𝑧∗) = 1, the equivalent shear 

inflow condition is 𝑈(𝑧∗) = 𝑧∗ + 0.4574, such that the velocity at the “bottom” of the cylinder is 

0.4574 and the velocity at the “top” of the cylinder is 1.4574. Diameter ratios (
𝐷𝑡𝑜𝑝

𝐷𝑏𝑜𝑡𝑡𝑜𝑚
) of 2:1 

and 3:1 are simulated, with the larger diameter at the “fast” end of the cylinder. Boundary 

conditions are similar to the surface suction simulations with the exception of the inflow, and a 

similar boundary conditions on the cylinder with the exception of the suction velocity. 
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CHAPTER 3.  RESULTS AND DISCUSSION – BASEBALL AERODYNAMICS 

3.1 ROTATING SPHERES 

 Simulations are for rotating spheres and spheres with seams are performed for three 

Reynolds number and spin parameter combinations: 𝑅𝑒 = 500, 𝜔∗ = 0.25; 𝑅𝑒 = 500, 𝜔∗ =

0.5; and 𝑅𝑒 = 1000, 𝜔∗ = 0.25. Poon et al. (2014) and others have characterized and mapped 

the flows past spheres for 𝑅𝑒 = 100 − 1000, 𝜔∗ ≤ 1.2. Figure 3-1 shows the present studies in 

the context of the flow regimes identified by previous literature. 

 

 

Figure 3-1. Different flow regimes for transversely rotating spheres, from Poon et al. (2014). 

Orange circles ( ) indicate parameters sampled in the present study. 
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3.1.1 FLOW STRUCTURES 

 The flow past a rotating sphere at 𝑅𝑒 = 500, 𝜔∗ = 0.25 is investigated for 𝛼 =

0°, 15°, 30°, 45°, 60°, 75°, and 90°. For transverse rotation (𝛼 = 90°), a “vortex shedding” regime 

has been reported at 𝜔∗ = 0.2 (Poon et al., 2014), characterized by horseshoe shaped vortices shed 

downward from the sphere, with opposing induced vortices, both of which are symmetric about 

the 𝑦𝑧-plane. While the effect of rotation axis has been studied at 𝑅𝑒 = 300 (Poon et al., 2010), 

the effect of rotation axis is less well studied at higher 𝑅𝑒. Figure 3-2 shows the flow structures 

across the range of 𝛼 sampled. Flow structures are identified by the maximum imaginary 

component of the eigenvectors (𝜆𝑚𝑎𝑥) of the velocity gradient tensor ∇𝒖 (Chong et al., 1990), with 

isosurfaces of 𝜆𝑚𝑎𝑥 = 0.25 plotted. Isosurfaces are colored by velocity magnitude 𝒖̅. 

Qualitatively, the flow structures at 𝛼 = 90° are well matched to those observed by Poon et al., 

with periodic horseshoe vortex shedding and is symmetric about the 𝑦𝑧-plane. The flow structures 

are largely the same at 𝛼 = 75°, but are no longer planar symmetric due to the slight asymmetry 

of the sphere’s rotation. At 𝛼 = 45°, the wake retains some of the features from higher 𝛼, but is 

noticeably deflected in the +𝑥-direction. At lower 𝛼 of 0° and 15°, the wake loses the periodic 

horseshoe vortex shedding structure, and is instead characterized by elongated threads which spiral 

about the streamwise axis, resulting in near zero time-averaged lift in the 𝑥- and 𝑦-directions. This 

behavior is similar to that observed at lower 𝑅𝑒. Looking at the time-average streamwise velocity 

contours, there is a clear trend of increased asymmetry in the 𝑥𝑧-plane as 𝛼 tends to 45°. At 𝛼 =

0° and 90°, the mean flow is planar symmetric, with 𝛼 = 0° being axisymmetric. 
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Figure 3-2. Isosurface plots at 𝑅𝑒 = 500, 𝜔∗ = 0.25, colored by 𝒖̅ 

 

  

𝛼 = 0° 

𝛼 = 15° 

𝛼 = 30° 

𝛼 = 45° 

𝛼 = 60° 

𝛼 = 75° 

𝛼 = 90° 
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Figure 3-3. Time-averaged streamlines with streamwise velocity contours in 𝑦𝑧-plane (left) and 

𝑥𝑧-plane (right) for 𝑅𝑒 = 500, 𝜔∗ = 0.25 

 

𝛼 = 0° 

𝛼 = 15° 

𝛼 = 30° 

𝛼 = 45° 

𝛼 = 60° 

𝛼 = 75° 

𝛼 = 90° 
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 The flow past a rotating sphere at 𝑅𝑒 = 500 and an increased 𝜔∗ = 0.5 are investigated 

for 𝛼 = 45° and 90°. The flow remains in the “vortex shedding” regime as observed by Poon et 

al. for 𝜔∗ up to 0.6. Figure 3-4 shows the flow structures at the two 𝛼 sampled. 

 

 

 

Figure 3-4. Isosurface plots at 𝑅𝑒 = 500, 𝜔∗ = 0.5, colored by 𝒖̅ 

 

 

 

Figure 3-5. Time-averaged streamlines with streamwise velocity contours in 𝑦𝑧-plane (left) and 

𝑥𝑧-plane (right) for 𝑅𝑒 = 500, 𝜔∗ = 0.5 

 

For transverse rotation, the horseshoe vortex shedding remains but is no longer as planar 

symmetric as at lower 𝜔∗. The wake is again noticeably deflected in the +𝑥-direction at 𝛼 = 45°. 

In both cases, the mean recirculation region is shortened in comparison to 𝜔∗ = 0.25. 

𝛼 = 45° 

𝛼 = 90° 

𝛼 = 45° 

𝛼 = 90° 
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 At 𝑅𝑒 = 1000 and 𝜔∗ = 0.25, the flow regime becomes quite different. At earlier times, 

the flow is similar to the periodic, symmetric vortex shedding seen at 𝑅𝑒 = 500 for transverse 

rotation. However, at later times in the simulation the flow in the near wake region is much less 

periodic, and the wake becomes more chaotic as it is convected downstream. At 𝛼 = 45°, the wake 

is again deflected in the +𝑥-direction but does not retain as much of the flow structure from the 

𝛼 = 90° case as at lower 𝜔∗. Figure 3-6 shows snapshots the flow structures at the end of the 

simulation. 

 

 

 

Figure 3-6. Isosurface plots at 𝑅𝑒 = 1000, 𝜔∗ = 0.25 for 𝛼 = 45°, 90°, colored by 𝒖̅ 

 

 

 
Figure 3-7. Time-averaged streamlines with streamwise velocity contours in 𝑦𝑧-plane (left) and 

𝑥𝑧-plane (right) for 𝑅𝑒 = 1000, 𝜔∗ = 0.25 

𝛼 = 45° 

𝛼 = 90° 

𝛼 = 45° 

𝛼 = 90° 
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3.1.2 FORCE COEFFICIENTS 

 Force coefficients are reported at different across the range of simulations of rotating 

spheres. Figure 3-8 shows the time-varying drag, lift, and side-force coefficients at 𝑅𝑒 = 500, 

𝜔∗ = 0.25, for 𝛼 = 0° − 90°, while Figure 3-9 shows the mean quantities, averaged over the final 

half of the simulation (50 time units). The lift 𝐶𝐿𝑦
 shows a clear increase with an increase in 𝛼 – 

as expected from a Magnus effect model, which predicts that the lift scales linearly with the 

transverse component of rotation. 𝐶𝐷 shows an increase with 𝛼 for 𝛼 ≥ 45°, but decreases from 

𝛼 = 0° to 30° - a departure from the trend observed by Poon et al. (2010). This phenomenon is 

discussed further in Section 3.2. The side-force 𝐶𝐿𝑥
 has fluctuations which are non-trivial in 

comparison to 𝐶𝐿𝑦
 for all 𝛼 except 90°, where the side-force is approximately 0 throughout the 

simulation. At both 𝑎 = 0° and 90°, the time-averaged side-force is approximately zero, and the 

side-force peaks in magnitude at 𝛼 = 45°, with |
𝐶𝐿𝑥

𝐶𝐿𝑦

| = 37.9%.  

 

 
Figure 3-8. Time history of drag (left), lift (middle), and side-force (right) coefficients for sphere 

at 𝑅𝑒 = 500, 𝜔∗ = 0.25 
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Figure 3-9. Time-averaged drag (left), lift (middle), and side force (right) coefficients for sphere 

at 𝑅𝑒 = 500, 𝜔∗ = 0.25 

 

 Force coefficients for an increased 𝜔∗ (𝑅𝑒 = 500, 𝜔∗ = 0.5) and an increased 𝑅𝑒 (𝑅𝑒 =

1000, 𝜔∗ = 0.25) are reported for 𝛼 = 45° and 90°. With increased rotation of the sphere, both 

the drag and lift increase in magnitude. The side-force, which was zero throughout the time of 

the simulation at 𝜔∗ = 0.25, is initially zero but begins to have non-zero fluctuations in time 

during the last half of the simulation. This correlates with the slight asymmetry observed in the 

wake structures due to increased instability from higher rotation rates. For the 𝛼 = 45° case, the 

side force is again non-trivial, with |
𝐶𝐿𝑥

𝐶𝐿𝑦

| = 43.0%. At 𝑅𝑒 = 1000, drag and lift are reduced 

from the 𝑅𝑒 = 500 case, with the side force becoming more unsteady at 𝛼 = 90°. At 𝛼 = 45°, 

the side-force is again significant, though smaller than at 𝑅𝑒 = 500, with |
𝐶𝐿𝑥

𝐶𝐿𝑦

| = 23.2%. 

 

 
Figure 3-10. Time history of drag (left), lift (middle), and side-force (right) coefficients for 

sphere at 𝑅𝑒 = 500, 𝜔∗ = 0.5 
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Figure 3-11. Time history of drag (left), lift (middle), and side-force (right) coefficients for 

sphere at 𝑅𝑒 = 1000, 𝜔∗ = 0.25 

 

3.2 BASEBALL AERODYNAMICS 

 In this section, we report simulations of baseballs for the same flow conditions as the 

spheres in Section 3.1. For 𝑅𝑒 = 500, 𝜔∗ = 0.25, two different seam orientations are simulated – 

“four-seam” and “two-seam”, traditionally the most used seam configurations used by baseball 

pitchers. Figure 3-11 shows a graphical representation of the two different seam orientations for 

𝛼 = 90°. At 𝑅𝑒 = 500, 𝜔∗ = 0.5 and 𝑅𝑒 = 1000, 𝜔∗ = 0.25, a four-seam orientation is 

simulated. At 𝑅𝑒 = 1000, 𝜔∗ = 0.25, simulations are performed for a “small” seam (ℎ𝑠 = 0.31") 

and a “large” seam (ℎ𝑠 = 0.62"). The effect of the seam is discussed in terms of the effect on 

qualitative flow features as well as aerodynamics force coefficients, which affect the trajectory of 

pitched balls in flight. 

 

 
(a) 

 

 
(b) 

Figure 3-12. Rotation of a baseball in (a) two-seam orientation and (b) four-seam orientation 
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3.2.1 FLOW STRUCTURES 

 For 𝑅𝑒 = 500, 𝜔∗, simulations are performed on baseballs with a four-seam and two-seam 

orientation. Figure 3-13 shows a comparison of the flow structures at 𝛼 = 90° between a sphere 

and baseballs. While flow structures in the wake of both four- and two-seam baseballs remain in 

the “vortex shedding” regime seen for a transversely rotating sphere, the seam introduces 

asymmetry about the 𝑦𝑧-plane not observed for a sphere with no seam, especially in the four-seam 

case. In the two-seam case the flow is much more symmetric, as the seam remains symmetric about 

the 𝑦𝑧-plane for a transversely rotating two-seam ball while it is asymmetric for a four-seam ball. 

 

       

 
(a)                                               (b)                                                  (c) 

Figure 3-13. Isosurface plots at 𝑅𝑒 = 500, 𝜔∗ = 0.25 at (a) 𝛼 = 0°, (b) 𝛼 = 45°, (c) 𝛼 = 90°, 

colored by 𝒖̅. Spheres are shown at left, two-seams at middle, and four-seams at right. 

 

Figure 3-14 shows streamlines and mean streamwise velocity comparisons between spheres and 

the two seam orientations considered. Though instantaneous flow structures are somewhat varied, 

mean flow quantities show very little difference between a sphere and either baseball seam 
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orientation. This trend is also present in the time-averaged force coefficients with some exceptions, 

which will be discussed below. 

 

 
 

 
 

 
(a)       (b) 

 

 

 
(c) 

Figure 3-14. Time-averaged streamlines with streamwise velocity contours in 𝑦𝑧-plane (left) and 

𝑥𝑧-plane (right) for at (a) 𝛼 = 0°, (b) 𝛼 = 45°, (c) 𝛼 = 90° for 𝑅𝑒 = 500, 𝜔∗ = 0.25 

Sphere 

Two-
Seam 

Four-
Seam 

Sphere 

Four-Seam 

Two-Seam 
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 At 𝑅𝑒 = 500, 𝜔∗ = 0.5, the vortex shedding regime observed for spheres with transverse 

rotation is again seen for a four-seam baseball. The wake retains the slight asymmetry not seen at 

lower 𝜔∗, though the side-force coefficients average to zero in time. At 𝛼 = 45°, the wake is again 

deflected to the +𝑥-direction and the flow structures are largely the same, though the deflected 

horseshoe vortices are not as prominent for the four-seam baseball case in comparison to a sphere. 

 

    

 
(a)    (b) 

Figure 3-15. Isosurface plots at 𝑅𝑒 = 500, 𝜔∗ = 0.5 at (a) 𝛼 = 45° and (b) 𝛼 = 90°, colored by 

𝒖̅. Spheres are shown at left and four-seams at right. 
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(a)       (b) 

Figure 3-16. Time-averaged streamlines with streamwise velocity contours in 𝑦𝑧-plane (left) and 

𝑥𝑧-plane (right) for at (a) 𝛼 = 45°, (b) 𝛼 = 90° for 𝑅𝑒 = 500, 𝜔∗ = 0.5 

 

 At 𝑅𝑒 = 1000, 𝜔∗ = 0.25, simulations are performed for a four-seam baseball with a 

“small” seam (approximately the height of an MLB seam) as in the simulations above, as well as 

a “large” seam, which is twice the height of the small seam. At this higher Reynolds number, the 

effects of the seam are more apparent. The flow past a sphere is already more chaotic and turbulent 

than at lower Reynolds number, but the seam appears to make the wake even more chaotic, as 

evidenced by the flow structures for both 𝛼 = 45° and 𝛼 = 90°. The recirculation region 

noticeably shortens with an increase in seam height, and the mean flow for a large seam at 𝛼 =

45° is noticeably more deflected in the +𝑥-direction than the sphere or small seam cases. 

 

Sphere 

Four-
Seam 
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(a)     (b) 

Figure 3-17. Isosurface plots at 𝑅𝑒 = 1000, 𝜔∗ = 0.25 at (a) 𝛼 = 45° and (b) 𝛼 = 90°, colored 

by 𝒖̅. Spheres are shown at left, small seams at middle, large seams at right. 

 

 

 

 
(a)       (b) 

Figure 3-18. Time-averaged streamlines with streamwise velocity contours in 𝑦𝑧-plane (left) and 

𝑥𝑧-plane (right) for at (a) 𝛼 = 45°, (b) 𝛼 = 90° for 𝑅𝑒 = 1000, 𝜔∗ = 0.25 
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3.2.2 FORCE COEFFICIENTS 

 Force coefficients for baseball simulations are reported and compared to the forces on 

rotating spheres. Figure 3-19 shows the drag, lift, and side-force coefficients at 𝑅𝑒 = 500, 𝜔∗ =

0.25 at 𝛼 = 90°. Both drag and lift track very closely between a sphere, two-seam baseball, and 

four seam baseball, and the time-averaged values are nearly identical. The side-force reflects trends 

noted in the flow structures in the previous section. While the side-force on a sphere is zero 

throughout the simulation, the side-force on a four-seam baseball has small but non-trivial 

fluctuations. However, a change in the seam orientation to two-seam results in a significantly 

dampened side-force signal in time, largely attributable to the unique planar symmetry of the ball 

with this orientation rotating about the transverse axis. Time-averaged force quantities are reported 

for 𝛼 = 0° − 90°. The non-monotonic behavior of the drag with 𝛼 is not seen with two-seam or 

four-seam baseball as it is with spheres. Interestingly, there are other phenomena in which the flow 

past a sphere exhibits unexpected behavior, while a baseball behaves more conventionally. Briggs 

(1959) and others have observed that a rotating sphere may exhibit an “anti-Magnus” effect, where 

the lift direction is opposite what is predicted by the Magnus effect, while no such effect has been 

reported for baseballs (Nathan, 2008). This is perhaps another instance of the seam “stabilizing” 

the behavior of flows past rotating spheres. Predictably, the drag is slightly higher for a baseball 

than for a sphere due to the seam. Lift values are very close between all three cases, increasing 

from zero at 𝛼 = 0° to a maximum at 𝛼 = 90°. The average side-force values vary slightly 

between the three cases, though a maximum magnitude in side-force occurs at 𝛼 = 45° for spheres 

and both seam orientations. Interestingly, the seam does not appear to enhance the side-force at 

this regime, even reducing the side-force at 𝛼 = 45° in the case of a four-seam orientation. 
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Figure 3-19. Time history of drag (left), lift (middle), and side-force (right) coefficients for 

sphere and baseballs at 𝑅𝑒 = 500, 𝜔∗ = 0.25, 𝛼 = 90° 

 

 

Figure 3-20. Time-averaged drag (left), lift (middle), and side force (right) coefficients for sphere 

and baseballs at 𝑅𝑒 = 500, 𝜔∗ = 0.25 

 

 Figure 3-21 shows time-average force comparisons between a sphere and a four-seam 

baseball at the three 𝑅𝑒 and 𝜔∗ regimes investigated. At 𝑅𝑒 = 500, 𝜔∗ = 0.5, the trend is similar 

to at 𝜔∗ = 0.25. For a four-seam orientation, the seam has little effect on drag and lift, with time-

averaged values nearly identical to a sphere. While at 𝜔∗ = 0.25, a four-seam orientation reduces 

the side-force at 𝛼 = 45° by 18%, at 𝜔∗ = 0.5 the side-forces are within 1% of each other. The 

largest effect of a seam at this size is when the Reynolds number is increased to 1000. Here, the 

seam increases the drag by roughly 6%, approximately 10 times the increase in drag caused by the 

seam at 𝑅𝑒 = 500. 
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Figure 3-21. Drag, lift, and side-force trends between spheres (solid lines) and four-seam 

baseballs (dashed lines) at 𝑎 = 45°, 90° 

 

 Looking at the effect of different seam heights at 𝑅𝑒 = 1000, there is a clear effect of 

increasing the seam height on all force coefficients. A larger seam yields a slight increase in lift, 

with a more significant increase in drag. The side force, which is similar in magnitude between a 

sphere and a baseball with a small seam, increases by 40% for a large seam at 𝛼 = 45°. The trend 

of increased side force with increased Reynolds number and seam height indicates that as the 

boundary layer thickness decreases and the seam height becomes larger relative to the boundary 

layer size, the seam has a greater influence on the boundary layer and, at intermediate 𝛼 such as 

45°, can enhance asymmetries in separation on either side of the ball, leading to a greater lateral 

side-force. 
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Figure 3-22. Drag, lift, and side-force trends between a sphere, small seam baseball, and large 

seam baseball at 𝑅𝑒 = 1000, 𝜔∗ = 0.25 for 𝛼 = 45°, 90° 

 

 In while an increased seam height does cause an increased side-force, it is clear that the 

side-force is present even without any seam at all. It is likely that at the higher Reynolds numbers 

at which the game of baseball is played, the seam is more important in the “side-force” or “wake-

shifting” phenomenon due to further decrease in the boundary layer size. However, it is apparent 

that at more moderate Reynolds numbers of 500 − 1000, this phenomenon is more attributable to 

the spin axis 𝛼 than the seam itself. At 𝛼 = 45° and adjacent values, the side-force is sufficient to 

significantly alter the flight of balls in motion, with or without the presence of a seam. In the 

following section, the implications of the aerodynamic forces obtained from the present 

simulations on the trajectory and movement of pitched baseballs is discussed. 

 

3.2.3 PITCHED BASEBALL TRAJECTORY EXAMPLE 

 In this section, the present findings are used in a sample calculation of the trajectory and 

total movement of pitches thrown with different spin axes and seam orientations. Figure 3-23 

shows the pitch movement profile of two-seam and four-seam baseballs thrown with different spin 

axes, using data obtained from simulations at 𝑅𝑒 = 500, 𝜔∗ = 0.25. Calculations are done for a 
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typical MLB fastball velocity of 90 mph released 55 feet from home plate from a right-handed 

pitcher with an “over-the-top” (or 12:00) arm slot. Pitch movements are reported with the 

movement due to gravity subtracted (e.g., a pitch with zero lift would have 0” of horizontal and 

vertical movement). For 𝛼 = 45°, the side force contributes roughly 6 inches (more than 2 ball 

diameters) of horizontal movement not accounted for by the Magnus force. Figure 3-24 shows an 

example of final pitched ball locations for selected 𝛼 relative to the “strike zone”. For 𝛼 = 45°, a 

Magnus-only model would predict the ball to land in the middle of the strike zone, but the side-

force causes the ball nearly outside the strike zone. In a so-called “game of inches”, this could 

represent a significant competitive advantage for a pitcher who is able to make use of the 

side=force. 

  
(a)       (b) 

 

Figure 3-23. Total pitch movement for (a) two-seam and (b) four-seam pitched baseball, in 

comparison to a “Magnus-only” model with no side-force. Arrows represent the “additional” 

movement from the side-force. 
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Figure 3-24. Final location of a four-seam baseball pitched with 𝛼 = 0° (bottom), 𝛼 = 45° 

(right), and 𝛼 = 90° (top), when “aimed” at the middle of the strike zone 
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CHAPTER 4.  RESULTS AND DISCUSSION – FLETTNER ROTORS 

 In this chapter, simulation results for flows past three-dimensional rotating cylinders are 

presented. In the first section, the results for cylinders with surface suction are reported for various 

spin ratios and suction ratios and are compared to rotating cylinders with no suction. In the 

following section, results for tapered cylinders are reported and compared to straight cylinders at 

varying spin ratios. Results for tapered cylinders are then used for an exploratory design study of 

a small drone which uses Flettner rotors for propulsion. 

 

4.1 CYLINDERS WITH SURFACE SUCTION 

 Rotating cylinders with surface suction are simulated at 𝑅𝑒 = 200 for 𝜔∗ = 2.5, 3.0, and 

3.5. The suction ratio 𝛾 =
𝑈𝑠𝑢𝑐𝑡𝑖𝑜𝑛

𝑈∞
 is investigated at 0.1, 0.2, and 0.5, and compared to the baseline 

case without suction. For the spin ratios investigated, the flow reaches a stationary state by 62.5 

convective time units. Figure 4-1 shows the drag and lift in time for the sampled parameters. In all 

cases, increased suction velocity leads to a clear increase in lift, and the drag is nearly zero in all 

cases. For 𝜔∗ = 2.5, increasing 𝛾 has the effects of increasing lift, decreasing drag, and shortening 

the time in the simulation to reach stationary state. Interestingly at 𝜔∗ = 3.5, increased 𝛾 has the 

effect of slightly increasing drag and increasing the time to reach stationary state. Even for three-

dimensional simulations, the flow has very little variation along the length of the cylinder (𝑧-axis), 

so flows can be visualized using the 𝑧-vorticity component through the mid-plane of the cylinder 

(Figure 4-2). 
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Figure 4-1. Time history of drag (left) and lift (right) for cylinders with suction at 𝑅𝑒 = 200 

  

𝜔∗ = 2.5 

𝜔∗ = 3.0 

𝜔∗ = 3.5 
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Figure 4-2. Vorticity contours for 𝜔∗ = 2.5 − 3.5, 𝛾 = 0 − 0.5 at 𝑅𝑒 = 200 

 

Increases in both 𝜔∗ and 𝛾 lead to a shrinking of the positive vorticity region near the stagnation, 

which is approximately 180° from the location of the suction zone. The suction assists the 

circulation produced by the rotation of the sphere, moving the stagnation point towards the 

bottom of the sphere and causing a more favorable pressure distribution for increased lift. Figure 

4-3 shows comparisons of the lift-to-drag ratio and the percentage increase in lift due to suction. 

With increased 𝛾, the optimal 𝐿/𝐷 is achieved at lower 𝜔∗  – at 𝛾 = 0, 𝐿/𝐷 increases with 𝜔∗, 

while at 𝛾 = 0.5, 𝐿/𝐷 decreases with 𝜔∗. For values of 𝛾, the greatest percentage increase in lift 

is achieved at 𝜔∗ = 2.5, with the lift nearly doubling for 𝛾 = 0.5. While the surface suction 

certainly indicates favorable aerodynamic performance as compared to a Flettner rotor with no 

suction, further design considerations would need to consider the power consumption trade-off 

 𝜔∗ = 2.5 𝜔∗ = 3.0 𝜔∗ = 3.5 

𝛾 = 0 

𝛾 = 0.1 

𝛾 = 0.2 

𝛾 = 0.5 
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and feasibility when implementing a surface suction, especially for a suction velocity as high as 

50% of the free-stream velocity. 

 

  
(a)       (b) 

Figure 4-3. (a) Lift-to-drag ratio for cylinder with various 𝜔∗ and 𝛾 and (b) percentage increase 

in drag over baseline case (no suction) 

 

 

4.2 TAPERED CYLINDERS 

 In this section, simulations of rotating cylinders with different profiles in a shear flow are 

reported. Cylinders are simulated at 𝑅𝑒 =
〈𝑈∞〉𝐷

𝜈
= 200, with a slight modification in the Reynolds 

number definition to account for the non-uniform free-stream velocity. Simulations are performed 

at 𝜔∗ =
𝜔𝐷

2〈𝑈∞〉
= 2.0 − 4.0, for two different cylinder geometries: a “straight” cylinder, and a 

“tapered” cylinder. The straight cylinder is the same geometry as simulated in the previous section, 

with a uniform cross-sectional area along the span of the cylinder. The tapered cylinder considered 

has a linearly varying diameter along the span, with an end diameter ratio of 2:1, and the mid-span 

diameter set equal to the straight cylinder diameter. The larger end of the tapered cylinder is set to 

the “fast” side of the domain, with the smaller end of the cylinder set to the “slow” side of the 

domain. The motivation for investigating this particular geometry is that, as opposed to in a 
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uniform inflow, the local 𝜔∗(𝑧) is not uniform on the cylinder surface in a shear inflow. Therefore, 

since 𝑈∞(𝑧) increases linearly along the span of the cylinder, a cylinder whose diameter also 

increases linearly along the span will have a more uniform local 𝜔∗(𝑧) profile, and possibly a more 

stable flow than a straight cylinder. 

 Figure 4-4 shows instantaneous flow structures for straight and tapered cylinders across 

the range of 𝜔∗ simulated. From this perspective, the fast end of the cylinder is located to the left 

and the slow end to the right. Both due to the non-uniform inflow velocity and the finite cylinder 

span, the flows are much more three-dimensional than in the surface suction simulations. At both 

ends of the cylinder, tip vortex-like structures are formed. At higher 𝜔∗, the flow becomes 

increasingly unsteady for both cylinder geometries. At the slow end, the tip vortex is much more 

stable for the tapered cylinder as compared to the straight cylinder for all 𝜔∗. At the fast end, the 

opposite is true, as the flow past the tapered cylinder is steady at lower 𝜔∗ but becomes unstable 

for higher 𝜔∗, while the tip vortex remains steady for the straight cylinder. 
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Figure 4-4. Isosurface plots of instantaneous flow structures for straight cylinders (left) and 

tapered cylinders (right) in shear flow, colored by 𝒖̅ 

 

Figures 4-5 and 4-6 show the time histories of lift and drag and the mean lift-to-drag ratios, 

respectively. Due to the finite cylinder span, the drag substantially increased from the infinite span 

surface suction simulations. The trends and overall behavior of the force coefficients are similar 

between the two cylinder geometries – with increased 𝜔∗, both lift and drag increase for both cases. 

At 𝜔∗ = 3.5 and 4.0, the forces become more unsteady in time compared to lower spin ratios, a 

similar trend to the flow structures seen in Figure 4-4. As the flow becomes more unsteady at 

higher 𝜔∗, the lift-to-drag ratios decrease for both cylinder geometries. At lower 𝜔∗, the tapered 

Straight Tapered 

𝜔∗ = 2.0 

𝜔∗ = 2.5  

𝜔∗ = 3.0  

𝜔∗ = 3.5  

𝜔∗ = 4.0  
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cylinder has a slightly better performance than the straight cylinder, while above 𝜔∗ = 3.0 the 

straight cylinder has a better lift-to-drag ratio. In both cases, 𝜔∗ = 2.0 has the optimal lift-to-drag 

ratios – 3.53 for the straight cylinder, and 3.63 for the tapered cylinder. 

 

 

 

 

Figure 4-5. Time history of drag (left) and lift (right) for straight and tapered cylinders in shear 

flow at 𝑅𝑒 = 200 

 

 

Figure 4-6. Lift-to-drag ratio for straight and tapered cylinders in shear flow at 𝑅𝑒 = 200 

Straight Tapered  
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4.3 FLETTNER DRONE DESIGN STUDY 

 In this section, data from simulations in the previous section are used for a design study of 

a “Flettner drone” application. In this concept, a drone device is proposed which uses Flettner 

rotors in place of blades. Given that the cylinder in this setup would be rotating about a central 

pivot point, simulation data with a shear inflow boundary condition are more applicable than with 

a uniform inflow. The primary design considerations are the mechanical power required to obtain 

55 lbf thrust (the maximum load allowed for a small unmanned aircraft in the United States, per 

FAA rule 14 CFR Part 107), and the loading noise. A simplified schematic of a Flettner drone is 

shown in Figure 4-7 

 

Figure 4-7: “Flettner drone” concept with cylinder rotating about a central point 

 

For a drone with 𝑁 rotors, the total thrust is obtained by 𝐹𝐿𝑖𝑓𝑡 = 𝑁 (
1

2
𝜌𝐴𝐶𝐿𝑈2), where 𝜌 is the 

atmospheric density, 𝐴 is the cross-section area, 𝐶𝐿 is the lift (dependent on 𝜔∗), and 𝑈 is the free-

stream velocity. With a variable free-stream velocity 𝑈(𝑧) = Ω𝑧, the mean value 〈𝑈2(𝑧)〉 =

𝜔2〈𝑧2〉 is used instead. With the shear velocity profile specified in Section 2.4.2, 〈𝑧2〉 across the 

length of the cylinder becomes 〈𝑧2〉 = 𝐿2, where 𝐿 is the length of the cylinder. With the cross-
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sectional area 𝐴 = 𝐿𝐷, the total thrust then becomes 𝐹𝐿𝑖𝑓𝑡 = 𝑁 (
1

2
𝜌𝐿3𝐷𝐶𝐿Ω2), and the drag is 

𝐹𝐷𝑟𝑎𝑔 = 𝑁 (
1

2
𝜌𝐿3𝐷𝐶𝐷Ω2), and the required Ω for a specified thrust can be obtained. Assuming 

the drag to be a point force at the middle of the cylinder where 𝑧𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ≈ 𝐿, the mechanical 

power can be estimated as 𝑃 = 𝐹𝐷𝐿Ω = 𝑁 (
1

2
𝜌𝐿4𝐷𝐶𝐷Ω3). The loading noise generated from the 

cylinders rotating with angular velocity Ω can be estimated as 𝑝𝐿
′ ~𝐹𝐷

𝑅Ω2

4𝜋𝑟𝑐2
, where 𝑝𝐿

′  is the loading 

noise, 𝑅 is the drone radius, 𝑟 is the distance to the observer, and 𝑐 is the speed of sound. The noise 

level can then be estimated as 𝑁𝑜𝑖𝑠𝑒~20 log (
𝑝𝐿

′

𝑝𝑟𝑒𝑓
) [𝑑𝐵} 

 In this sample calculation, a drone with 𝑁 = 12 Flettner rotors is considered, with a rotor 

length of 20 cm and a rotor diameter of 2 cm, at atmospheric pressure, with noise calculated for 

an observed 1 𝑚 away. Figure 4-8 shows the predicted loading noise for prescribed thrust levels 

for straight and tapered cylinders. In both cases, loading noise is approximately 85 − 90 𝑑𝐵 for 

𝜔∗ = 2.0 − 4.0. Considering the power requirements and noise at various 𝜔∗, shown in Figure 4-

9, the optimal spin ratio for minimizing power and noise is 𝜔∗ = 3.5 for a straight cylinder, while 

the noise and power. For both cylinder geometries, the power requirement is approximately 3 𝑘𝑊. 
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(a)       (b) 

Figure 4-8: Colors of noise [dB] with iso-lines of thrust [lbf] for (a) straight and (b) tapered 

cylinders at 𝜔∗ = 2.0 − 4.0 

 

  
(a)       (b) 

Figure 4-9: Power requirements and loading noise at 55 lbf thrust for (a) straight and (b) tapered 

cylinders at 𝜔∗ = 2.0 − 4.0 
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