Mechanical Engineering Master's Program Info Session

Prof. Rajat Mittal

Director of Master's Studies

Mike Bernard

Academic Program Manager

MSE Degree Requirements

Section A - 8 advisor-approved courses

- 2 must be applied math, numerical analysis, or computational
- 4 (all-course) or 3 (essay) must be 530.xxx or 535.xxx Mechanical Engineering
- No more than 2 from Engineering for Professionals
- No more than 4 from upper-undergrad level (xxx.4xx only)
- No independent research, graduate research, or special studies.

Section B – choose one

- 2 more courses (530.823 MSE Graduate Research can be one)
- Certain Center for Leadership Education courses can count.
- Master's Essay Research or Co-Op

See Section 3.2 of the Master's Advising Manual

Department of Mechanical Engineering

Master's Essay (Thesis) – Research

Conduct original research with world-renowned professors!

- 1. Complete 8-10 courses 1st-4th semesters
- 2. Identify a research advisor 1st-2nd semester
- **3.** Conduct research 2nd-4th semesters
 - 6 total credits of 530.823 (equivalent of 2 courses);
 - Prepare and submit a master's essay that summarizes your research (approved by advisor + one other faculty "reader")
 - There is no essay defense

Advantages of MSE Research Essay

- Become part of a research team and learn from a topic-area expert.
- Conduct research that might lead to papers and/or conference presentations.
- Improve your writing/presentation skills.
- Impress potential employers with your expertise.
- Improve chances of entering a PhD program (JHU or others).

Master's Essay (Thesis) – Co-Op

Immerse yourself in a co-operative work experience!

- 1. Complete 8-10 courses 1st-2nd-3rd semesters
- 2. Meet with the Master's Industry Co-Op Office 2nd semester
 - Discuss interests and seek employer
 - Create application and resume
 - Interview with companies
- 3. Work 3rd-4th semester
 - All courses must be completed before beginning work
 - Work at the employer
 - Meet with faculty advisor and employer supervisor every six weeks
 - Write the essay

Advantages of MSE Co-Op Essay

- Get work experience
- Increase potential for continued employment
- Impress potential employers with your expertise.

Frequently Asked Questions about MSE Essay

• How do I find an advisor?

- Contact professors in your area of interest and inquire about master's research opportunities.
- Contact the Director of Graduate Studies or the Academic Program Manager to inquire about potential advisors.

• What kinds of research projects do Master's students do?

- There is significant flexibility on what constitutes a master's essay project, which is decided with your advisor.
- For example, master's research may be a fundamental scientific investigation involving theory, experiments, computational modeling, or it may involve experimental design and/or testing of a device.

• How long is the Master's Essay?

- There is no recommended length. The essay is a summary of your project and is approved by your advisor and one other reader. Your advisor will usually guide you in the writing of your essay.
- Research can sometimes be open-ended. What if I cannot achieve my research objectives even after 6 credits of research? Will that delay my graduation?
 - No! The MS essay is written, submitted and approved at the end of 6 credits of MSE research. As long as your advisor is satisfied that your research effort was appropriate and you prepare an approved essay, you are done.
- I am thinking of joining the 5th-Year Master's program. Can I do an essay and finish in one year?
 - Yes! Talk to potential advisors early in your Junior and Senior years so that you can start planning your essay right away.
- Is there funding available for Master's students who conduct research?
 - Most MS research is <u>unfunded</u>, but some advisors might have funding available.

LIFE DESIGN LAB WSE GRADUATE AFFAIRS OFFICE

JOHNS HOPKINS U N I V E R S I T Y

S Life Design Educator for Engineering Masters Students Mark Savage - <u>msavag16@jhu.edu</u> 607-342-3067

FOR DISCUSSIONS / CONSULTATIONS ABOUT CAREER AND/OR JOB SEARCH FOCUSED ISSUES

REGISTER ON HANDSHAKE TO MAKE APPTS, APPLY FOR JOBS, SIGN-UP FOR PRESENTATIONS: https://handshake.jhu.edu

Combining Machine Learning, Multiscale Modeling, and in situ Experiment to Design Materials with Superior Properties

Prof. Chen Li chen.li@jhu.edu https://li.me.jhu.edu/

Terradynamics Lab

Movement Science at the Interface of Biology, Robotics, & Physics

Robot Traversing Beam Obstacles

We study how robots can take advantage of active sensing and control to traverse obstacles robustly.

Robotic design and experiments

Fish Crawling on Mud & Through Vegetation

We study how mudskippers, bichir fish, and rope fish moves on muddy terrain to get insights on evolution.

- Animal experiments
- Robotic design and experiments
- Physics-based modelling & simulation

Spider Predator-Prey Interaction

We study how jumping spiders plan a detour in complex environment and invade a web to catch preys.

Animal experiments

Jumping spider

Spider Web Vibration Prey Sensing

We study how orb-weaving spiders identify and locate prey on their webs through active vibrational sensing using robophysical model.

- Robotic design and experiments
- Physics-based modelling & simulation

Prof. Chen Li chen.li@jhu.edu https://li.me.jhu.edu/

Terradynamics Lab

Movement Science at the Interface of Biology, Robotics, & Physics

Russell, Zirker, Blemker (2012) Sports Technol.

We study how humans climb rocks dynamically

• Video Analysis

<image>

Lifeline / pack wall

We develop and study a goat-inspired robot climbing steep terrain

Goat Climbing on Challenging Terrain

- Robotic design and experiments
- Physics-based modelling & simulation

In collaboration with Prof. Yun Chen here

Design and create a robot to imitate malaria parasite movement and understand how it penetrates skin

- Robotic design and experiments
- Physics-based modelling & simulation

Digging into Heavy Rubble

We study how jumping spiders plan a detour in complex environment and invade a web to catch preys.

Robophysical Modeling of Malaria

• Animal experiments

In collaboration with Prof. Elliot Hawkes at UCSB

Student Mentee Achievements

- Have mentored 105 students at JHU (from PhD to high school)
- >40% master, undergraduate, and high school student have earned co-authorship on conference abstracts, >15% on peer-reviewed papers
- 40% have continued onto top PhD, master, or undergraduate programs (MIT, Stanford, Princeton, Berkeley, UPenn, JHU, CMU, Northwestern, UMichigan, UW, Virginia Tech, Columbia, etc.)
- >10% have continued on to top tech companies (Google, Facebook, Amazon, Agility Robotics, etc.)
- >10% of my mentees have won competitive research awards in the department, at local events, and from other universities
 - 5 PhD, 1 master, and 1 undergraduate students won best paper award finalists
 - 1 undergrad won competitive summer research scholarship
 - 5 undergrads won 8 competitive ME departmental research & scholarly and outstanding achievement awards
 - 1 high school student won 2 competitive awards at Science Fair

Learn more: <u>https://li.me.jhu.edu/mentoring/, https://li.me.jhu.edu/join/</u>

Cell encapsulation in functional gel

000 0.0. 0+1-5278 641 ms Injectable cell-therapy w/ Luo Gu and Sangwon Kim Single-cell secretomics w/Rebecca Schulman 100 µm

Pumpless flow control

POC diagnostics w/Jamie Spangler and Netz Arroyo

Label-free cell sorting

Retina transplantation w/ Don Zack

Vortex-mediated multi-molecular delivery

Tissue Morpho & Mechanics Lab (TMML)

Shinuo Weng, Ph.D. <u>s.weng@jhu.edu</u> https://sweng.wse.jhu.edu/

Congenital anomalies are the leading cause of death for children <15 in the U.S.

CDC, WISQARS

Formation of shape and function is a mechanical progression

Harnessing mechanical blueprint in vivo to engineer tissues in vitro

Understanding the Mechanics Associated with Arthritis and Pain Musculoskeletal Tissue Engineering and Advanced Mechanics Lab

Project: Understand Multiaxial Load Induced Damage

Design/Run experiments

Jill Middendorf

jmidden1@jh.edu

Implement finite element models to explain predict damage Long term goal: Understand structural, cellular, and mechanical changes caused by multiaxial loading of musculoskeletal tissues

- Build FE model of lumbar spine(ABAQUS)
- Virtually 'perform' laminectomy surgery

Long term goal: Implement results into a virtual simulator that can take many patient specific parameters and many variations in the surgical procedure and provide suggestions to the surgeon to prevent adverse outcomes

Gayme group projects

SEM micrographs of shark skin samples

Actual shark skin (Mako, Isurus oxyrinchus)

[Martin & Bhushan 2016]

Magnified view of dermal denticle

Master's Essay projects staring Fall 2023

- Bio-inspired investigation of drag reduction techniques
 - Simulation of flow over riblets
 - Model validation through simulation over a range of conditions
- Reduced order wall-turbulence modeling tools
 - Characterizing the role of the physics in refining the model
 - Combine linear systems and simulation oriented tools
- Research tasks and required skills
 - Linear systems (resolvent) analysis of fluid flows (Matlab and Python)
 - Simulations of channel flow using existing codes (CFD)
 - Analysis of results (Matlab and Python)
 - Modification of tools to simulate improved models based on findings (modeling)

[From National Geographic]

15

Best of luck to you this year!

Questions?

Department of Mechanical Engineering

