
Implementation of displacement-based linear and nonlinear
elastostatic user element subroutine (UEL) in Abaqus/Standard

Bibekananda Datta

PhD student, Mechanical Engineering
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218

Preface

Finite element analysis/method (FEA/M) is a widely adopted numerical method to solve
partial differential equations that originated in the field of structural mechanics. Eventually,
FEM transcended beyond structural mechanics and established itself as one of the primary
methods in continuum mechanics and multiphysics modeling. One of the most popular
and user-friendly commercial finite element programs for nonlinear mechanics problems is
Abaqus/ Standard which provides a plethora of built-in element technologies, constitutive
models, and contact modeling features. Additionally, it provides user programming capa-
bility through which users can enhance the existing features or finite element capabilities
known as user subroutines. User-defined element subroutine (UEL) is the most high-level
interface for users to program new element technology for nonlinear solid mechanics and
multiphysics modeling.

This document is a brief overview of the theoretical background, algorithm, and implemen-
tation of the user element subroutine (UEL) in Abaqus/ Standard using isotropic linear
elasticity and hyperelasticity as examples. This document assumes that the users are famil-
iar with the fundamentals of continuum mechanics, finite element analysis, common features
of Abaqus/ Standard, and Fortran programming. Fortran-based implementations and cor-
responding Abaqus input files accompanying those implementations are available in the
following GitHub repositories:

• Isotropic linear elasticity: https://github.com/bibekananda-datta/Abaqus-UEL-Elasticity
• Hyperelasticity: https://github.com/bibekananda-datta/Abaqus-UEL-Hyperelasticity

For both cases, the implementation includes 3D continuum implementation and 2D plane
strain implementation. I should warn the users that, the implementations are based on
the standard displacement-based finite element formulation and do not include any special
techniques to circumvent advanced numerical issues such as shear or volumetric locking,
hourglass modes, etc. often observed in finite element simulations. Using these implementa-
tions or algorithms as templates, users can extend the codes to include more capabilities. It
should be straightforward to include axisymmetric elements in these templates but including
plane stress case, especially for the hyperelastic problem, will require some extra effort.

1

https://github.com/bibekananda-datta/Abaqus-UEL-Elasticity
https://github.com/bibekananda-datta/Abaqus-UEL-Hyperelasticity

Contents

1 Brief review of isotropic linear elastostatics 3

2 Displacement-based finite element formulation 4
2.1 Strong form of the governing equations of boundary value problem 4
2.2 Weighted residual based weak formulation of the governing equations 4
2.3 Discretization and Buvnov-Galerkin finite element approximation 5

3 Isoparametric element formulation and numerical integration 7
3.1 Evaulation of volume integrals . 8

4 Implementation of displacement element in ABAQUS/Standard 8
4.1 Algorithmic procedure for small strain displacement element 9
4.2 Brief description of the user element subroutine in GitHub repository 10
4.3 Brief description of keywords in Abaqus input file 11

5 A brief review of finite elasticity (hyperelasticity) 13

6 Finite element formulation for finite strain eleasticity 15
6.1 PK-I stress-based total Lagrangian finite element formulation 17
6.2 PK-II stress-based total Lagrangian finite element formulation 20
6.3 Cauchy stress-based updated Lagrangian finite element formulation 24
6.4 Relation between different elasticity tensors (or tangents) 25
6.5 Some notes on fourth-order tensors . 26

7 Constitutive model specific material and spatial tangents 27
7.1 Quasi-incompressible Neo-Hookean model 27
7.2 Quasi-incompressible Arruda-Boyce model 28

8 Implementation of displacement element in ABAQUS/Standard 29
8.1 Algorithmic procedure for total and updated Lagrangian element 30
8.2 Brief description of the user element subroutine and input files in GitHub

repository . 32

9 Additional resources 32

Bibliographic references 33

2

1 Brief review of isotropic linear elastostatics

Let Ω(x) ∈ R3 be an isotropic linear elastic body undergoing small deformation under
mechanical loading. For small deformation, the infinitesimal strain tensor can be defined as,

ε = 1
2
[︂
grad(u) + (grad(u))⊤

]︂
= sym[grad(u)], (1.1)

where, u is the displacement field. The strain tensor is often decomposed into a deviatoric,
εdev, and a volumetric part, εvol, as,

ε =
(︃

ε− 1
3 tr(ε)1

)︃
⏞ ⏟⏟ ⏞

εdev

+ 1
3 tr(ε)1⏞ ⏟⏟ ⏞

εvol

⇒ εij =
(︃

εij −
1
3εkkδij

)︃
⏞ ⏟⏟ ⏞

εdev

+ 1
3εkkδij⏞ ⏟⏟ ⏞

εvol

(1.2)

The constitutive relation for linear elastic material is given by Hooke’s law as,

σ = c : ε, ⇒ σ = λ tr(ε)1+ 2µε, ⇒ σij = cijklεkl = λεkkδij + 2µεij, (1.3)

where, σ is known as the Cauchy stress. Here, c is known as the fourth-order elasticity
or modulus tensor, and µ and λ are known as Lamé constants. These parameters can be
expressed in terms of more familiar parameters, i.e., Young’s modulus, E, and Poisson’s
ratio, ν, as,

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (1.4)

For three-dimensional isotropic linear elastic materials, using Voigt notation, the Hooke’s
law can be written as,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2µ + λ λ λ 0 0 0
λ 2µ + λ λ 0 0 0
λ λ 2µ + λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.5)

For two-dimensional (plane stress and plane strain) cases,⎡⎢⎢⎣
σ11

σ22

σ12

⎤⎥⎥⎦ = E

1− ν2

⎡⎢⎢⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎥⎥⎦
⎡⎢⎢⎣

ε11

ε22

2ε12

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

plane stress

,

⎡⎢⎢⎣
σ11

σ22

σ12

⎤⎥⎥⎦ = E

(1 + ν)(1− 2ν)

⎡⎢⎢⎣
1− ν ν 0

ν 1− ν 0
0 0 1−2ν

2

⎤⎥⎥⎦
⎡⎢⎢⎣

ε11

ε22

2ε12

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

plane strain
(1.6)

3

Remark 1. The elasticity tensor (sometimes referred to as the tangent modulus, especially
in the context of finite elasticity), c, is a fourth-order tensor of dimension 3 × 3 × 3 ×
3. Similarly, stress and strain tensors are second-order tensors of dimension 3 × 3. The
dimension mentioned here corresponds to the three-dimensional cases since two-dimensional
plane stress and plane strain cases are somewhat idealizations of reality. However, because
of the symmetry of the stress and strain tensors, it is possible to reduce the order of stress
and strain tensors and represent them as a one-dimensional tensor (i.e., vector) form of
dimension 6 × 1. Consequently, the elasticity tensor, c, can be reduced to a second-order
tensor, D, of dimension 6× 6. Following this procedure, the elasticity tensor is represented
in its reduced second-order form in (1.5) and (1.6). This is known as Voigt notation.

2 Displacement-based finite element formulation

2.1 Strong form of the governing equations of boundary value problem

The governing partial differential equation for stress equilibrium as well as the boundary
conditions in terms of the displacement vector, g, on Γg and the Cauchy traction, t, on Γt

are given by,
div(σ) + ρb = 0 in Ω,

u = g on Γg,

σ · n = t on Γt,

(2.1)

where, b is the body force per mass.

2.2 Weighted residual based weak formulation of the governing equations

Let u ∈ U be the trial solution which satisfies ui = gi, and w ∈ W be a vector test (or
weight) function which satisfies wi = 0 on Γg, I can write the weak form of momentum
balance equation as ∫︂

Ω

div(σ) ·w dv +
∫︂
Ω

ρb ·w dv = 0. (2.2)

Let me use the following identity and divergence theorem on the above weak form,

div(A⊤u) = div(A) · u + A : grad(u),

and
∫︂
Ω

div(A⊤u) dv =
∫︂

∂Ω

(An) · u ds. (2.3)

Thus, the global weak form, Wu(u), for a linear elastic material can be written as,

Wu(u) = −
∫︂
Ω

σ [ε(u)] : grad(w) dv +
∫︂
Ω

ρb ·w dv +
∫︂
Γt

t ·w ds = 0, (2.4)

The above statement is equivalent to the variational principle (or principle of virtual work)
where the first term represents internal work and the second and third terms combined
represent external work.

4

2.3 Discretization and Buvnov-Galerkin finite element approximation

The computational domain and its boundary are discretized using finite elements, i.e., Ω0 =
∪ Ωe

0 and ∂Ω0 = ∪ ∂Ωe
0. This approximation allows me to write the system of residuals for

each element as (Zienkiewicz et al., 2014, Chapter 2). Thus, the element-level weak form,
We

u(u), can be written as,

We
u(u) = −

∫︂
Ωe

σ [ε(u)] : grad(w) dv +
∫︂

Ωe

ρb ·w dv +
∫︂
Γe

t

t ·w ds = 0, (2.5)

where, σ [ε(u)] is the Cauchy stress, and t = σ ·n is the Cauchy traction. The infinitesimal
strain tensor is given by, ε(u) = sym[grad(u)].

As is standard in finite element literature, I employ the following discretization for the
coordinate s of an element, x, nodal displacement, u, and weight functions, w,

x = Nu(x)xe =
nen∑︂
a=1

Na
u(x)xa, ⇒ xi =

nen∑︂
a=1

Na(x)xa
i

u(x) = Nu(x)ue =
nen∑︂
a=1

Na
u(x)ua, ⇒ ui(x) =

nen∑︂
a=1

Na(x)ua
i ,

w(x) = Nu(x)we =
nen∑︂
a=1

Na
u(x)wa, ⇒ wi(x) =

nen∑︂
a=1

Na(x)wi.

(2.6)

Here, xe and ue are the vectors containing nodal coordinates and nodal displacement of an
element. we is the corresponding arbitrary test functions. Here, Nu is known as the inter-
polation (or shape) function matrix corresponding to all the nodes and Na

u is the repeating
sub-matrix corresponding to each node, a.

For a three-dimensional case, the matrix representation of interpolation functions, Na
u, and

the vector representation of coordinates of a node, xa, can be written as,

Na
u =

⎡⎢⎢⎣
Ni 0 0
0 Ni 0
0 0 Ni

⎤⎥⎥⎦
nsd×nsd

, xa =

⎡⎢⎢⎣
xi

yi

zi

⎤⎥⎥⎦
nsd×1

, (2.7)

For a two-dimensional case, [Na
u] can be reduced by eliminating 3rd row and 3rd column,

and xa is accordingly modified by eliminating 3rd row. Displacement u and test function w
also can be represented using a similar form. Using [Na

u] as the repeating sub-matrix block
for the shape function matrix, [Nu], I can write, Nu, and nodal coordinate of the element,

5

xe, as,

Nu =

⎡⎢⎢⎣
N1 0 0 N2 0 0 · · · Nnen 0 0
0 N1 0 0 N2 0 · · · 0 Nnen 0
0 0 N1 0 0 N2 · · · 0 0 Nnen

⎤⎥⎥⎦
nsd×nsd∗nen

,

and xe =
[︂
x1 y1 z1 x2 y2 z2 · · · · · · · · · xnen ynen znen

]︂⊤
nsd∗nen×1

.

(2.8)

Substituting the discretization of w = Nuwe in the corresponding global form (2.5), for any
arbitrary test functions, we, I have the residual as,

Re
u(ue) =

∫︂
Ωe

σ [ε(ue)] : ∂Nu

∂x
dv −

∫︂
Ωe

ρN⊤
u b dv −

∫︂
Γe

t

N⊤
u te ds = 0, (2.9)

Recognizing
σ [ε(ue)] : ∂Nu

∂x
= ∂Nu

∂x
: σ [ε(ue)] = B⊤

uσ [ε(ue)] . (2.10)

Here, [Bu] is known as the strain-displacement matrix. I should note that, since the Cauchy
stress is symmetric, i.e., σ = σ⊤, for a two-dimensional case, [Bu] has a dimension of
[Bu]3×nsd∗nen, and for three-dimensional case, the dimension is [Bu]6×nsd∗nen. Similar to
the shape function matrix, [Nu], the strain-displacement matrix, [Bu], is also composed of
repetitive sub-matrix, [Ba

u]. The matrix form of [Bu] and [Ba
u] are given by,

Bu =
[︂
B1

u B2
u B3

u · · · · · · Bnen
u

]︂
nstress×nsd∗nen

, where, Ba
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Na
,1 0 0

0 Na
,2 0

0 0 Na
,3

0 Na
,3 Na

,2

Na
,3 0 Na

,1

Na
,2 Na

,1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nstress×nsd

.

(2.11)

For two-dimensional plane strain and plane stress cases, the matrix form of [Ba
u] and as well

as the vector form of σ can be easily reduced. The dimension for [Ba
u] is [Ba

u]3×nsd. Now,
with these definitions, I can write the residual as,

Re
u(ue) = −

∫︂
Ωe

B⊤
uσ [ε(ue)] dv +

∫︂
Ωe

ρN⊤
u b dv +

∫︂
Γe

t

N⊤
u te ds = 0, (2.12)

In the element residual, the first term corresponds to internal force, fint, and the second
and third term combined corresponds to external force, fext. At equilibrium, the difference
between external and internal force should be zero and this is what will give us the displace-
ment solution. Now, by using the discretized constitutive relation for the Cauchy stress can

6

be written as,
σ [ε(ue)] = DBuue, (2.13)

where D is the stiffness tensor for Hookean materials with a dimension of [D]nStress×nStress
where nStress = 6 for three-dimensional cases and nStress = 3 for two-dimensional plane
strain and plane stress cases. For standard compressible isotropic linear elastic materials,
C can mapped from D using Voigt notation. By substituting the discretized constitutive
relation, the mechanical residual for an element can be written as,

Re
u(ue) = −

∫︂
Ωe

B⊤
u DBuu dv +

∫︂
Ωe

ρN⊤
u b dv +

∫︂
Γe

t

N⊤
u te ds = 0 (2.14)

Following standard finite element literature, for linear elastic materials, I can write,∫︂
Ωe

B⊤
u DBu dv

⏞ ⏟⏟ ⏞
ke

ue =
∫︂

Ωe

ρN⊤
u b dv −

∫︂
Γe

t

N⊤
u t ds

⏞ ⏟⏟ ⏞
fe

, ⇒ [ke]{u} = {f e}.
(2.15)

where [ke] is the element stiffness matrix, u is the nodal displacement of the element, and
f e is external forces. The dimension of element stiffness matrix is [ke]nsd∗nen×nsd∗nen, and the
dimension of force vector is {f e}nsd∗nen×1.

The global stiffness matrix, [k], and the global force vector, f , can be obtained by assembling
the element-level quantities as,

K =
nel

A
e=1

ke and f =
nel

A
e=1

f e (2.16)

Thus, the final global matrix form is,

[K]{u} = {f}, (2.17)

which can be solved for nodal displacements, u, with appropriate boundary conditions being
imposed on the linear system of equations.

3 Isoparametric element formulation and numerical integration

So far, I have kept the form of the shape functions abstract. Shape functions are typically
defined using the Lagrangian interpolation procedure as a function of the nodal coordinates
N(x). However, it is possible to use different interpolation procedures to define the shape
functions. For a large computational model with multiple elements, defining individual shape
functions becomes computationally challenging. Thus, in practice, the shape functions are
defined in a normalized local iso-parametric coordinate system, N(ξ), where ξ ∈ [−1, 1].
These elements are called master or parent elements. Thus, a mapping from the local
coordinates to the global coordinate system is necessary.

7

Typically during implementation, [N(ξ)]nen×1 is defined as a vector containing the shape
functions corresponding to the element nodes. At the same time,

[︂
∂N(ξ)

∂ξ

]︂
nen×nsd

is defined as
a matrix containing the derivatives of shape function which is essentially used to form the
strain-displacement matrix, [Bu]. Thus, coordinate mapping for the shape functions is,[︄

∂N(ξ)
∂ξ

]︄
nen×nsd

=
[︄

∂N(ξ)
∂x

]︄
nen×nsd

[︄
∂x
∂ξ

]︄
nsd×nsd

,

⇒
[︄

∂N(ξ)
∂x

]︄
nen×nsd

= J−1
ξ

[︄
∂N(ξ)

∂ξ

]︄
nen×nsd

.

(3.1)

Here, Jξ =
[︂

∂x
∂ξ

]︂
is known as element jacobian.

3.1 Evaulation of volume integrals

Using the definition of iso-parametric coordinate system, any generic volume integral can be
mapped as, ∫︂

Ωe
f(x) dv =

∫︂
□

det(Jξ)f̂(ξ) d □ (3.2)

Since ξ ∈ [−1, 1], it is straightforward and convenient to apply the Gauss quadrature ap-
proach to evaluate the integrals within the element stiffness matrix and force vectors. For
volume integrals, it can be done as,∫︂ +1

−1

∫︂ +1

−1

∫︂ +1

−1
det(Jξ)f̂(ξ) dξ1dξ2dξ3 =

∑︂
i

∑︂
j

∑︂
k

det(Jξ)WiWjWkf̂(ξi
1, ξj

2, ξk
3),

=
nip∑︂
i=1

det(Jξ)Wf̂(ξi
1, ξj

2, ξk
3).

(3.3)

Here, W = WiWjWk. For standard Lagrangian elements, the values of Gauss weights and
local coordinates of integration points are available in any standard finite element textbook
(Zienkiewicz et al., 2013), thus, I did not list them here.

Remark 2. To implement surface traction or pressure boundary conditions, it is also re-
quired to calculate the surface integral. However, for user-defined elements, these boundary
conditions can be implemented using built-in Abaqus elements overlaid on the user elements
which I will refer to as the “dummy” element technique. The same “dummy” elements are
used for visualizing the results in Abaqus (to be discussed later).

4 Implementation of displacement element in ABAQUS/Standard

Since the user-element subroutine (UEL) in ABAQUS/Standard allows programming both
linear and nonlinear physical and material behavior, to maintain generality of the program-
ming interface, it asks the user to program the element stiffness matrix, AMATRX and element
residual vector RHS instead of the force vector that appeared in our formulation. If I consider
the element residual, Re

u(u) to be a generic nonlinear function of the displacement field, u,

8

I need to linearize the element residual first as follows,

Re
u (ue + ∆ue) = Re

u(u) + ∂Re
u(u)

∂u
∆u (4.1)

To obtain a solution of ∆u, the perturbed residual has to vanish, thus giving me

−∂Re
u

∂ue

∆ue = Re
u, ⇒ ke∆ue = Re

u (4.2)

It is evident that the definition of the element stiffness matrix is as follows,

ke = −∂Re
u

∂ue

. (4.3)

According to ABAQUS documentation, for user-defined element subroutines (UEL), the ele-
ment stiffness matrix is called, AMATRX, and the residual is called the right-hand side vector,
RHS. The user is responsible for programming the element stiffness matrix and residual
vector. Once the element stiffness matrix is available, ABAQUS performs the assembly
and application of displacement (Dirichlet or kinematic type) boundary conditions to the
discretized global system. Consequently, by employing an initial guess for the nodal displace-
ment field, ∆u is solved at each iteration until the residual falls below a certain tolerance
(close to zero). For linear material, it takes a single iteration to obtain the solution. However,
for nonlinear cases, it takes more than a few iterations to achieve convergence.

4.1 Algorithmic procedure for small strain displacement element

The following algorithmic procedure illustrates a simple implementation of displacement-
based finite element formulation of isotropic linear elasticity. However, the implementation
can be easily extended to include different constitutive responses such as hypoelasticity,
elasto-plasticity, viscoelasticity, etc. by changing the subroutine umatElastic with an ap-
propriate set of input and output arguments. This subroutine calculates the constitutive
behavior of the material, i.e., stress, and elasticity tensor, in the tensor form and then maps
it to vector-matrix form using Voigt convention.

9

Procedure 1: ABAQUS/ Standard user element subroutine (UEL) implementation
for isotropic linear elasticity

Input : PROPS, COORDS, JELEM, JTYPE, NNODE, NDOFEL, TIME, DTIME, U,
DU, V, A, PREDEF, JDLTYP, NDLOAD, MDLOAD, DDLMAG, ALMAG

Output: AMATRX, RHS, PNEWDT, ENERGY, SVARS

1 Get nInt← PROPS and nDim, nTens← JTYPE
2 Initialize {Na

u, Ba
u, Nu, Bu, ke

uu} = 0
3 Get nodal displacement vector of the element, ue, ∆ue

4 Get wint,ξint ← SUBROUTINE gaussQuadrtr(nDim, nNode)
5 for k = 1 to nInt do
6 Get [Nu],

[︂
∂Nu
∂ξ

]︂
← SUBROUTINE interpFunc(nDim, nNode)

7 Calculate ∂x
∂ξ

= [xe]
[︂

∂Nu
∂ξ

]︂
8 Calculate ∂Nu

∂x = ∂Nu
∂ξ

(︂
∂x
∂ξ

)︂−1
and Jξ

9 for i = 1 to nNode do
10 Form Na

u(nDim, NDOFEL) and Ba
u(nTens, nDim) matrix

11 Nu(1 : nDim, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Na
u(1 : nDim, 1 : nDim)

12 Bu(1 : nTens, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Ba
u(1 : nTens, 1 : nDim)

13 end
// end of nodal loop

14 Calculate ε = Buue

15 Get D,σ← SUBROUTINE umatElastic(PROPS, ε) // UMAT returns Cauchy
stress and material tangent in voigt form

16 Store σ, ε→ SVARS ke
uu = ke

uu + wint(k) det(Jξ)
(︂
B⊤

u DBu
)︂

17 Ru = Ru − wint(k) det(Jξ)
(︂
B⊤

uσ− ρN⊤
u b
)︂

18 end
// end of integration point loop

19 Assign AMATRX = ke
uu and RHS = Ru

4.2 Brief description of the user element subroutine in GitHub repository

Warning: This is a very brief description of the subroutine and example input file. Inter-
ested users should go through the subroutine to understand the implementation and consult
Abaqus documentation on the user element to understand the keywords used in the input
files.

The user element subroutine (UEL) available on the GitHub repository for isotropic linear
elasticity, uel_mech.for implemented 3D continuum solid elements and 2D plane strain
elements by making multiple options available to the user. The following table lists the
available user element types with corresponding tags and the number of integration points
(reduced and/or full) to be used as a property.

For the set of elements defined as user element in the Abaqus input file, Abaqus solver

10

Type of element UEL element tag Integration points (nInt)

4-node tetrahedral U1 1 (full)
8-node hexahedral U2 8 (full) and 1 (reduced)

3-node triangular (plane-strain) U3 1 (full)
4-node quadrilateral (plane-strain) U4 4 (full) and 1 (reduced)

10-node tetrahedral U5 4 (full)
20-node hexahedral U6 27 (full) and 8 (reduced)

6-node triangular (plane-strain) U7 3 (full)
8-node quadrilateral (plane-strain) U8 9 (full) and 4 (reduced)

Table 1: Types of available small displacement mechanical elements in Abaqus UEL.

calls the subroutine UEL(...) at each iteration (for Newton-Raphson solver) or every few
iterations (for modified Newton-Raphson solver) which returns AMATRX and RHS for global
assembly and solution. To enhance the capabilities of the default UEL(...) subroutine from
Abaqus, an additional subroutine is used with an extended set of input arguments. This
subroutine requires the user to enter 4 properties as input; two of which are real properties
and rest two are integer properties.

Name of the property Property location UEL variable

Elastic modulus, E props(1) E
Poisson ratio, ν props(2) nu

No of integration points jprops(1) nInt
No of post-processing variables jprops(2) nPostVars

Table 2: List of properties for the small displacement-based isotropic linear elastic element.

One of the main caveats of the Abaqus user subroutine is that the visualization of the element
output is not natively supported on Abaqus/ Viewer. If the user subroutine shares element
connectivity and integration points with any built-in Abaqus element, users can overlay the
built-in Abaqus elements with negligible elastic properties on the user elements. Henceforth,
the user can store the element output results using the global variable technique and transfer
them to the built-in elements using UVARM(...) from Abaqus. This subroutine is called at
each integration point for the built-in Abaqus element. In this implementation, I leveraged
this technique following Chester et al., 2015.

4.3 Brief description of keywords in Abaqus input file

Abaqus/CAE does not support user element features as well to build the finite element model.
However, if the user element has the same element topology and nodal connectivity as any

11

of the built-in Abaqus elements, then the user can use Abaqus/CAE to build the model and
export the model as a keyword-based Abaqus input file. To invoke the user element from
the input file, the following keywords are required.

*User Element ,Type=< >,Nodes =< >,Coordinates =< >,Properties =< >,Iproperties =< >
<list of degrees of freedom >
*Element , type=< >
<list of element connectivity >

The above block defines the element with an element tag, number of nodes, coordinates (or
dimensions), and properties for that element. to enter the properties, the following keyword
is required.

*uel property , elset = < >
** E, nu , nInt , nPostVar
< >, < >, < >, < >

As previously mentioned, to visualize the result, an additional set of the built-in Abaqus
element can be overlaid on the user element which shares the same element connectivity but
the element number is offset by a certain value. Additionally, to visualize the element output
(evaluated at the integration points) available via UVARM subroutine, the following keyword
needs to be used.

*User output variables
< >

Finally, the user has to request the output in the *STEP section of the input file.

* element output , elset =< >
uvarm

The number of User output variables is the same as nPostVars. The reason it needs to
be defined twice is because UEL(...) subroutine does not have any access to post-processing-
related keywords.

12

5 A brief review of finite elasticity (hyperelasticity)

Hyperelastic materials are a special class of elastic materials for which the stress is determined
from a representative strain energy density function. Natural and synthetic rubbers and
biological tissues are common examples of hyperelastic behavior. This class of materials
is accompanied by geometrically nonlinear deformation. Thus, unlike infinitesimal linear
elasticity, a simple kinematic description of deformation is deemed to be insufficient.

We consider a macroscopically homogeneous continuous body within the space which occu-
pies a volume Ω0(X) ∈ R3. This is known as the hydrated reference state of the body with
material point coordinate X ∈ Ω0 ∪ ∂Ω0, where ∂Ω0 is the boundary of Ω0. Material point
coordinate, X, can be mapped to the current deformed state with spatial point coordinate,
x, via a twice continuously differentiable, smooth one-to-one mapping such that x = φ(X, t).
Let, Ω and ∂Ω denote the body and the boundary in the current deformed state such that
x ∈ Ω∪ ∂Ω. The deformation gradient, F, between the reference state and the current state
can be defined as,

F = ∂x
∂X

= 1+ ∂u
∂X

⇒ F = FiI ei ⊗ eI . (5.1)

I should note that F is known as the so-called two-point tensor and its determinant represents
the change in volume, i.e.,

J = dv

dV
= det(F). (5.2)

For incompressible materials, J = det(F) = 1. The relation between the undeformed area,
dA, and the deformed area, da, is given by Nanson’s formula as,

da n = JF−⊤dA N. (5.3)

where, N and n are the unit normals to the undeformed and deformed area, respectively.
The deformation gradient, F, can be decomposed into rotation and stretch deformation as
follows,

F = RU = VR. (5.4)

where, R is known as the rotation tensor with properties R⊤ = R−1 and det(R) = 1. U
and V are known as the right and left stretch tensors, respectively. Since F is unsymmetric
as well as contains rigid body rotation, it is less of a useful measure for a deformable body.
Thus, as is standard in continuum mechanics,

b = FF⊤ = V2 ⇒ Bij = FiIFjI ,

C = F⊤F = U2 ⇒ CIJ = FiIFiJ ,
(5.5)

denote the left and right Cauchy-Green deformation tensors. Using spectral decomposition,
I can further write,

b =
3∑︂

i=1
λ2

i ni ⊗ ni, C =
3∑︂

i=1
λ2

i Ni ⊗Ni, (5.6)

where, λi is the eigen values of b and C, and Ni and ni are the eigen vector of C and b,

13

respectively. The same quantities can be used to write the stretch tensors, U and V, rotation
tensor, R, and deformation gradient, F, as below,

U =
3∑︂

i=1
λi Ni⊗Ni, V =

3∑︂
i=1

λi ni⊗ ni, R =
3∑︂

i=1
λi ni⊗Ni, F =

3∑︂
i=1

λi ni⊗Ni. (5.7)

The Cauchy-Green deformation tensors, B and C, share the same identities as,

I1 = tr(C) = tr(B) = λ2
1 + λ2

2 + λ2
3,

I2 = 1
2[(tr(C))2 − tr(C2)] = 1

2[(tr(b))2 − tr(b2)] = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 = det(C) = det(B) = λ2
1λ

2
2λ

2
3.

(5.8)

Using the definition of the Cauchy-Green deformation tensors, the Green-Lagrange strain
tensor, E, and the Euler-Almansi strain tensor, e, are defined as,

E = 1
2(C− 1), e = 1

2(1− b−1). (5.9)

The Cauchy traction, t, on the deformed body and the Piola-Kirchoff traction, T, on the
undeformed body are defined as,

t = σ · n, and T = P ·N. (5.10)

where, σ is the Cauchy stress, and P is the first Piola-Kirchhoff stress. Using Nanson’s
formula, these two stress tensors can be related as,

P = JσF− ⊤ ⇒ σ = J−1PF⊤ (5.11)

The symmetry conditions for the Cauchy stress, σ, and the first Piola-Kirchhoff stress, P,
are given by,

σ = σ⊤, and PF⊤ = FP⊤. (5.12)

Since, the first Piola-Kirchhoff stress, P is not symmetric, for mathematical and computa-
tional convenience, a symmetric second Piola-Kirchhoff stress, S, is defined as,

S = F−1P = JF−1σF− ⊤. (5.13)

For quasi-static and static cases where mass inertia can be ignored, the governing partial
differential equation for linear momentum balance is given by,

div(σ) + ρB = 0,

Div(P) + ρRb = 0, ⇒ Div(FS) + ρRb = 0.
(5.14)

where, b is the body force per unit mass, and ρ and ρR are the mass density in the current
and reference coordinate, respectively, and related to each other by ρR = Jρ. The rate

14

change of strain energy density is given by,

Ψ̇ = Jσ : d = S : Ė = P : Ḟ (5.15)

where Ψ is the referential Helmholtz free energy density (also known as the strain energy
density) for mechanical deformation.

Application of the first (balance of energy) and the second law (entropy inequality and
maximum dissipation criteria) to a mechanical system in conjunction with the Coleman-Noll
argument gives us,

P = ∂Ψ
∂F

, ⇒ S = ∂Ψ
∂E

= 2∂Ψ
∂C

, ⇒ σ = J−1F
(︄

2∂Ψ
∂C

)︄
F⊤ (5.16)

To ensure objectivity and material frame-indifference, the strain energy density functions
are often expressed in terms of the invariants of the Cauchy-Green deformation tensors, i.e.,
Ψ = Ψ̂R(I1, I2, I3). Thus, it becomes convenient to calculate stress in terms of the invariants,

σ = 2J−1
[︄(︄

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)︄
b− ∂Ψ

∂I2
b2 + I3

∂Ψ
∂I3

1

]︄
,

S = 2
(︄

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)︄
1− ∂Ψ

∂I2
C + I3

∂Ψ
∂I3

C−1 ⇒ Si = 1
λi

∂Ψ
∂λi

.

(5.17)

Remark 3. Hyperelastic materials are often considered to be incompressible, J = 1. For
purely incompressible materials, the third term in the stress expressions is substituted by
Lagrange multiplier, P , such that,

P = I3
∂Ψ
∂I3

(5.18)

P is evaluated using problem-specific boundary condition(s).

6 Finite element formulation for finite strain eleasticity

Truly incompressible or quasi-incompressible materials often demonstrate a well-known nu-
merical issue called volumetric locking which requires special treatment of the formulation.
First, I will derive the finite element formulation for a general nonlinear elastic case without
employing any special treatment. Special numerical treatments for incompressibility and
quasi-incompressibility are discussed in the later section.

For finite deformation, the governing equation for linear momentum balance be written in
two different ways, either in terms of the material coordinate and the Piola-Kirchhoff stress
or in terms of the spatial coordinate and the Cauchy stress. In referential (or material)
configuration, the governing partial differential equation for stress equilibrium as well as the

15

boundary conditions are given by,

Div P + ρRB = 0 in Ω0,

u = g on Γg,

P ·N = T on ΓT .

(6.1)

where, ∂Ω0 = Γg ∪ ΓT is the boundary of the referential domain Ω0, and Γg and ΓT are two
complementary subsurfaces. Similarly, in the current configuration, the governing partial
differential equation for stress equilibrium as well as the boundary conditions are given by,

divσ + ρB = 0 in Ω,

u = g on Γg,

σ · n = t on Γt.

(6.2)

where, ∂Ω = Γg ∪ Γt is the boundary of the referential domain Ω, and Γg and Γt are two
complementary subsurfaces.

Similar to the isotropic linear elastic case described in the previous section, considering the
referential computational domain to be discretized finite elements, i.e., Ω0 = ∪Ωe

0, I can
write weak form for an element in the reference configuration as,

We
u(u) = −

∫︂
Ωe

0

P : Grad(W) dV +
∫︂

Ωe
0

ρRB ·W dV +
∫︂

Γe
T

Te ·W dS = 0, (6.3)

where, W is the weight function that vanishes on Γg ⊂ ∂Ω0.

Using a similar rationale, the weak form for the element in the current configuration can be
written as,

We
u(u) = −

∫︂
Ωe

σ : grad(w) dv +
∫︂

Ωe

ρB ·w dv +
∫︂
Γe

t

Te ·w ds = 0, (6.4)

where, w is the weight function that vanishes on Γg ⊂ ∂Ω. By definition, the weight
functions, W and w, and their gradients are related to each other as,

W(X) = w(x), ⇒W = w ◦ φ,

Grad(W) = grad(w)F.
(6.5)

Using standard vector and tensor algebraic operations, I can show that both of the above
residual statements are equal.

16

6.1 PK-I stress-based total Lagrangian finite element formulation

The nodal coordinate, X, and the trial solutions for the displacement, u, and the vector
weight function, W, can be approximated using the interpolation function matrix, Nu as

X = Nu(X)Xe =
nen∑︂
a=1

Na
u(X)Xa, ⇒ xi =

nen∑︂
a=1

Na(X)xa
i

u(X) = Nu(X)ue =
nen∑︂
a=1

Na
u(X)ua ⇒ ui(X) =

nen∑︂
a=1

Na(X)ua
i ,

W(X) = Nu(X)We =
nen∑︂
a=1

Na
u(X)Wa ⇒ Wi(X) =

nen∑︂
a=1

Na(X)Wi.

(6.6)

The definition and matrix form of [Nu] remains the same as the case of linear elasticity
described in the previous section. Using that definition the deformation gradient can be
calculated as,

F = ∂x
∂X

= 1+ ∂u
∂X

= 1+ [ue]
[︄

∂Nu

∂X

]︄
, ⇒ FiJ = δij +

nen∑︂
a=1

∂Na

∂XJ

ua
i (6.7)

where, ∂Nu
∂X is a matrix which has a dimension of

[︂
∂Nu
∂X

]︂
nen×nsd

, and [ue] has a dimension of
[ue]nsd×nen. I should note that, when written in index notation, Na is not the matrix form,
but rather a scalar interpolation function corresponding to the node, a.

Unlike the second Piola-Kirchhoff stress, S, and the Cauchy stress, σ, the first Piola-Kirchhoff
stress is not symmetric (P ̸= P⊤). Thus, I will have,

P : Grad W = Grad (N) : PWe = G⊤
u PWe. (6.8)

Using these definitions, I can write the element-level residual in the reference configuration
as,

Re
u(ue) = −

∫︂
Ωe

0

G⊤
u P(ue) dV +

∫︂
Ωe

0

ρRN⊤
u b dV +

∫︂
Γe

T

N⊤
u Te dS = 0. (6.9)

where, [Gu] is the non-symmetric gradient matrix with a dimension of [Gu]nstress×nsd∗nen.
For two- and three-dimensional cases. [Gu] consists of repeating sub-matrices, [Ga

u], for

17

each node a which are defined as,

Ga
u =

⎡⎢⎢⎢⎢⎢⎣
Na

,1 0
0 Na

,1

Na
,2 0

0 Na
,2

⎤⎥⎥⎥⎥⎥⎦
nsd2×nsd

, Ga
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Na
,1 0 0

0 Na
,1 0

0 0 Na
,1

Na
,2 0 0

0 Na
,2 0

0 0 Na
,2

Na
,3 0 0

0 Na
,3 0

0 0 Na
,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nsd2×nsd

, (6.10)

The non-symmetric gradient matrix, [Gu], will be composed of by repeating the sub-matrices,
[Ga

u] for each node a.

Gu =
[︂
G1

u G2
u G3

u · · · · · · Gnen
u

]︂
nsd2×nsd∗nen

, (6.11)

For two- and three-dimensional cases, the first Piola-Kirchhoff stress vector is defined as
follows,

P =
[︂
P11 P21 P12 P22

]︂⊤
nstress×1

,

and P =
[︂
P11 P21 P31 P12 P22 P32 P13 P23 P33

]︂⊤
nstress×1

.
(6.12)

Since the first Piola-Kirchhoff stress, P, is a nonlinear function of the displacement field, ue,
I need to linearize the element residual first.

Re
u (ue + ∆ue) = Re

u(ue) + ∂Re
u(ue)
∂u

∆u (6.13)

To obtain the solution of a nonlinear equation, the perturbed residual, Re
u (u + ∆u) = 0,

which gives me,
−∂Re

u
∂u

∆u = Re
u. (6.14)

18

The element stiffness matrix, ke, is then given by,

ke = −∂Re
u

∂ue

=
∫︂

Ωe
0

G⊤
u

∂P
∂F

∂F
∂ue

dV,

=
∫︂

Ωe
0

G⊤
u

∂P
∂F

∂Nu

∂X
dV,

=
∫︂

Ωe
0

G⊤
u

∂P
∂F

Gu dV,

=
∫︂

Ωe
0

G⊤
u AGu dV.

(6.15)

In the context of nonlinear finite element analyses, [ke] is often referred to as the tangent
matrix. In some finite element literature, A = ∂P

∂F is defined as the first elasticity tensor. The
dimension of the element stiffness (tangent) matrix, [ke]nsd∗nen×nsd∗nen.

The element residual vector, Re
u(ue), is given by,

Re
u(ue) = −

∫︂
Ωe

0

G⊤
u P dV +

∫︂
Ωe

0

ρRN⊤
u B dV +

∫︂
Γe

T

N⊤
u Te dS (6.16)

Similar to the previous case of isotropic linear elasticity, the residual is again the difference
between external and internal force. For nonlinear problems, it is convenient to divide the
loading step into multiple sub-steps and solve for the displacement change, ∆u. Assuming
an initial guess for the displacement, the procedure is iteratively repeated until convergence
is achieved. This is known as the Newton-Raphson procedure for nonlinear systems of
equations.

Although the PK-I stress-based total Lagrangian formulation appears to be simple, it requires
evaluating the first elasticity tensor, ∂P

∂F , with a dimension of
(︂

∂P
∂F

)︂
nsd2×nsd2 is often not that

straight-forward. Thus, to make the implementation process simple, the total Lagrangian
formulation is often done in terms of the second Piola-Kirchhoff stress, S, since it is symmetric
(S = S⊤).

Remark 4. In some finite element literature, A is also called material tangent tensor.
However, I will reserve this terminology for the tangent that emerges in the second Piola-
Kirchhoff-based formulation.

19

6.2 PK-II stress-based total Lagrangian finite element formulation

By substituting P = FS into the weak form for an element in the reference configuration,
for an arbitrary test function, I have,

We
u(u) = −

∫︂
Ωe

0

FS : Grad(W) dV +
∫︂

Ωe
0

ρRB ·W dV +
∫︂

Γe
T

Te ·W dS = 0. (6.17)

Following the standard Galerkin procedure, let me consider the following discretization for
the nodal coordinates of an element, xe, nodal displacement, ue, and weight functions, W,
to write the discretized version of the element residual.

X = Nu(X)Xe =
nen∑︂
a=1

Na
u(X)Xa, ⇒ xi =

nen∑︂
a=1

Na(X)xa
i

u(X) = Nu(X)ue =
nen∑︂
a=1

Na
u(X)ua, ⇒ ui(X) =

nen∑︂
a=1

Na(X)ua
i ,

W(X) = Nu(X)We =
nen∑︂
a=1

Na
u(X)Wa, ⇒ Wi(X) =

nen∑︂
a=1

Na(X)Wi.

(6.18)

With the Galerkin discretization, for arbitrary test function, W, the element residual for the
linear momentum balance equation can be written as,

Re
u(ue) = −

∫︂
Ωe

0

FS : Grad(Nu) dV +
∫︂

Ωe
0

ρRN⊤
u B dV +

∫︂
Γe

T

N⊤
u Te dS = 0. (6.19)

The element residual vector, Re
u corresponds to all of the degrees of freedom (DOFs) in an

element. To facilitate the calculation of the element tangent matrix, it would be wise to
write the residual for each node as follows,

Ra
u(ue) = −

∫︂
Ωe

0

FS : Grad(Na
u) dV +

∫︂
Ωe

0

ρRNa
u

⊤B dV +
∫︂

Γe
T

Na
u

⊤Te dS = 0,

⇒ Ra
u(ua

i) = −
∫︂

Ωe
0

∂Na

∂XI

FiJSJI dV +
∫︂

Ωe
0

ρRNaBI dV +
∫︂

Γe
T

NaT e
i dS = 0

(6.20)

Following the standard procedure of the Newton-Raphson method, the component of the
element tangent matrix is given by,

kab = −Ra
u

∂ub
(6.21)

20

Now, the mechanical tangent, kab
uiuk

, is given by,

kab
uiuk

= −∂Ra
u

∂ub
k

=
∫︂

Ωe
0

∂Na

∂XI

(︄
∂FiJ

∂ub
k

SJI + FiJ
∂SJI

∂ub
k

)︄
dV,

=
∫︂

Ωe
0

∂Na

∂XI

(︄
∂FiJ

∂ub
k

SJI + FiJ
∂SJI

∂CKL

∂CKL

∂FmN

∂FmN

∂ub
k

)︄
dV,

=
∫︂

Ωe
0

∂Na

∂XI

(︄
∂FiJ

∂ub
k

SJI + FiJ

(︄
2 ∂SJI

∂CKL

)︄
FmLδKN

∂FmN

∂ub
k

)︄
dV,

=
∫︂

Ωe
0

∂Na

∂XI

(︄
∂FiJ

∂ub
k

SJI + FiJCIJKLFmL
∂FmK

∂ub
k

)︄
dV,

=
∫︂

Ωe
0

∂Na

∂XI

(︄
∂N b

∂XJ

δikSJI + FiJCIJKLFmL
∂N b

∂XK

δmk

)︄
dV,

=
∫︂

Ωe
0

∂Na

∂XI

(︄
∂N b

∂XJ

δikSJI + FiJCIJKLFkL
∂N b

∂XK

)︄
dV,

=
∫︂

Ωe
0

∂Na

∂XI

SJIδik
∂N b

∂XJ

dV +
∫︂

Ωe
0

∂Na

∂XI

(FiJCIJKLFkL) ∂N b

∂XK

dV,

=
∫︂

Ωe
0

∂Na

∂XJ

SJLδik
∂N b

∂XL

dV +
∫︂

Ωe
0

∂Na

∂XJ

(FiICIJKLFkK) ∂N b

∂XL

dV.

(6.22)

Here,
CIJKL = 2 ∂SJI

∂CKL

= ∂SJI

∂EKL

(6.23)

is defined as the material tangent tensor (or second elasticity tensor). Owing to the sym-
metric nature of the second Piola-Kirchhoff stress, S = S⊤ ⇒ SIJ = SJI , and the right
Cauchy-Green deformation tensor, C = C⊤ ⇒ CKL = CLK , the material tangent tensor, C
possesses minor symmetry, i.e., CIJKL = CJILK .

I used the property of summation indices (or dummy indices) to obtain the last expression
for the element tangent matrix. Additionally, the following intermediate results were used
when performing algebraic calculation of kab

uiuk
.

∂CKL

∂FmN

= FmLδKN + FmKδLm = 2FmLδKN (since CKL = CLK),

and, FiJ = δij +
nen∑︂
b=1

∂N b

∂XJ

ub
i ⇒ ∂FiJ

∂ub
k

= ∂N b

∂XJ

δik.
(6.24)

21

The matrix form of the mechanical element tangent matrix is given by,

[ke
uu]nsd∗nen×nsd∗nen =

∫︂
Ωe

0

(︂
G⊤

u ΣSGu + (BuΣF)⊤DC(BuΣF)
)︂

dV (6.25)

where, DC is the Voigt matrix form of the referential mechanical tangent CIJKL. The first
term in the element tangent matrix is known as geometric stiffness and is a result of initial
stresses and the second term is known as material stiffness. The second term is the standard
term as appeared in the case of the linear elastic finite element formulation with DC corre-
sponding to the material tangent, C. Often in finite element literature, BuΣF is represented
as an additive decomposition of Bu + BL

u.

The matrix form of element residual vector, Re
u(u), is then given by,

Re
u(ue) = −

∫︂
Ωe

0

(BuΣF)⊤S dV +
∫︂

Ωe
0

ρRN⊤
u B dV +

∫︂
Γe

T

N⊤
u Te dS (6.26)

Here, S is the second Piola-Kirchhoff stress vector in Voigt form.

[Gu] in the geometric stiffness term is the non-symmetric gradient matrix of the shape
functions which appears as,

Gu =
[︂
G1

u G2
u G3

u · · · · · · Gnen
u

]︂
nsd2×nsd∗nen

, (6.27)

where the sub-matrix, [Ga
u], for two-dimensional and three-dimensional cases are given by,

Ga
u =

⎡⎢⎢⎢⎢⎢⎣
Na

,1 0
0 Na

,1

Na
,2 0

0 Na
,2

⎤⎥⎥⎥⎥⎥⎦
nsd2×nsd

, Ga
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Na
,1 0 0

0 Na
,1 0

0 0 Na
,1

Na
,2 0 0

0 Na
,2 0

0 0 Na
,2

Na
,3 0 0

0 Na
,3 0

0 0 Na
,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nsd2×nsd

. (6.28)

22

[ΣS] is the stress matrix. For a two-dimensional and a three-dimensional case, it is given by,

ΣS =

⎡⎢⎢⎢⎢⎢⎣
S11 0 S12 0
0 S11 0 S12

S12 0 S22 0
0 S12 0 S22

⎤⎥⎥⎥⎥⎥⎦ , ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 0 0 S12 0 0 S13 0 0
0 S11 0 0 S12 0 0 S13 0
0 0 S11 0 0 S12 0 0 S13

S12 0 0 S22 0 0 S23 0 0
0 S12 0 0 S22 0 0 S23 0
0 0 S12 0 0 S22 0 0 S23

S13 0 0 S23 0 0 S33 0 0
0 S13 0 0 S23 0 0 S33 0
0 0 S13 0 0 S23 0 0 S33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.29)
[ΣS] has a dimension of [ΣS]nsd2×nsd2 . It is also possible to represent Ga

u and consequently
Gu and ΣS matrices in alternative matrix forms which will essentially give the same result
(de Borst et al., 2012; Reddy, 2015).

[ΣF]nsd∗nen×nsd∗nen is a square banded diagonal matrix of dimension nsd ∗ nen × nsd ∗ nen,
and for a three-dimensional case, it appears as,

ΣF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11 F12 F13 0 0 0 · · · 0 0 0
F21 F22 F23 0 0 0 · · · 0 0 0
F31 F32 F33 0 0 0 · · · 0 0 0

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

0 0 0 0 0 0 · · · F11 F12 F13

0 0 0 0 0 0 · · · F21 F22 F23

0 0 0 0 0 0 · · · F31 F32 F33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nsd∗nen×nsd∗nen

(6.30)

For a two-dimensional case, I can eliminate the rows and columns related to the third di-
mension and reduce the size of ΣF.

Use of the second Piola-Kirchhoff stress, S, in formulating the finite element, is immediately
evident. I can easily take advantage of an existing linear finite element program. By adding
a few additional lines to the program, I can modify the stiffness (tangent) matrix for finite
strain. Additionally, the fourth-order material tangent matrix, C, needs to be mapped to DC

using Voigt notation. Finally, I should note that the deformation-dependent body force and
traction (such as pressure) will require further treatment of the element stiffness (tangent)

23

matrix.

6.3 Cauchy stress-based updated Lagrangian finite element formulation

Recalling the weak form for the element in terms of Cauchy stress given by,

We
u(u) = −

∫︂
Ωe

σ : grad(w) dv +
∫︂

Ωe

ρB ·w dv +
∫︂
Γe

t

Te ·w ds = 0. (6.31)

I can follow the same procedure as the total Lagrangian approach (employing the Galerkin
discretization and Newton-Raphson method) to obtain the element tangent matrix in terms
of Cauchy stress and spatial tangent tensor. The discretization will be as follows,

x = Nu(x)xe =
nen∑︂
a=1

Na
u(x)xa, ⇒ xi =

nen∑︂
a=1

Na(x)xa
i

u(x) = Nu(x)ue =
nen∑︂
a=1

Na
u(x)ua, ⇒ ui(x) =

nen∑︂
a=1

Na(x)ua
i ,

w(x) = Nu(x)we =
nen∑︂
a=1

Na
u(x)wa, ⇒ wi(x) =

nen∑︂
a=1

Na(x)wi.

(6.32)

However, here I will follow an alternative approach in which I will push forward the element
tangent matrix from the total Lagrangian approach to the current configuration to obtain
the mechanical tangent, kab

uiuk
, in updated Lagrangian form,

kab
uiuk

=
∫︂

Ωe
0

∂Na

∂XJ

SJLδik
∂N b

∂XL

dV +
∫︂

Ωe
0

∂Na

∂XJ

(FiICIJKLFkK) ∂N b

∂XL

dV,

=
∫︂

Ωe
0

∂Na

∂xj

∂xj

∂XJ

SJIδik
∂N b

∂xl

∂xl

XL

dV +
∫︂

Ωe
0

∂Na

∂xj

∂xj

XJ

(FiICIJKLFkK) ∂N b

∂xl

∂xl

XL

dV,

=
∫︂

Ωe
0

∂Na

∂xj

(︂
J−1FjJSJLFlL

)︂
δik

∂N b

∂xl

dv +
∫︂

Ωe
0

∂Na

∂xj

(︂
J−1FiIFjJCIJKLFkKFlL

)︂ ∂N b

∂xl

dv,

=
∫︂

Ωe
0

∂Na

∂xj

σjlδik
∂N b

∂xl

dv +
∫︂

Ωe
0

∂Na

∂xj

cijkl
∂N b

∂xl

dv.

(6.33)
where,

cijkl = J−1FiIFjJCIJKLFkKFlL (6.34)

is defined as the spatial tangent tensor (or fourth elasticity tensor). Similar to the material
tangent tensor, c, also possesses minor symmetry.

In matrix form, the element tangent matrix can be written as,

ke =
∫︂

Ωe

(︂
G⊤

u ΣσGu + B⊤
u DBu

)︂
dv. (6.35)

24

Here, the shape function gradient matrix, Gu, and the stress matrix, Σσ has the same form
as the PK-II stress-based Lagrangian formulation. However, the shape function, gradient
matrix, and strain-displacement matrix are now evaluated at the current coordinate system.
Additionally, D is mapped from the fourth-order spatial tangent tensor, c, using Voigt
notation convention.

Similarly, I can push-forward the nodal residual (in index notation) in total Lagrangian
approach to obtain the nodal residual (in index notation) updated Lagrangian form and
consequently the element residual vector (in matrix form) in updated Lagrangian form as
follows,

Ra
u(ui) = −

∫︂
Ωe

∂Na

∂xj

σij dv +
∫︂

Ωe

ρNaBi dv +
∫︂
Γe

t

Nate
i ds,

Re
u(ue) = −

∫︂
Ωe

B⊤
uσ dv +

∫︂
Ωe

ρN⊤
u B dv +

∫︂
Γe

t

N⊤
u Te ds.

(6.36)

Cauchy stress-based finite element formulation resembles similarity with linear elastic finite
element formulation except for the geometric stiffness term. Since these matrices are mostly
sparse in the case of updated Lagrangian formulation, it is computationally efficient, however,
it requires updating the geometric configuration at each iteration to calculate the shape
functions and their derivatives.

6.4 Relation between different elasticity tensors (or tangents)

The first Piola-Kirchhoff stress, P, and the first elasticity tensor, A, are defined as,

P = ∂Ψ
∂F

, and A = ∂P
∂F

= ∂2Ψ
∂F∂F

(6.37)

The second Piola-Kirchhoff stress, S, and the second elasticity tensor (also called material
tangent tensor), A, are defined as,

S = 2∂Ψ
∂C

, and C = 2 ∂S
∂C

= 4 ∂2Ψ
∂C∂C

(6.38)

By recalling the element tangent matrices for PK-I and PK-II stress based total Lagrangian
formulation, following relation holds true between first and second elasticity tensor,

AiJkL = SJLδik + FiICIJKLFkK (6.39)

As defined before, the spatial tangent (or fourth elasticity tensor) is as follows,

cijkl = J−1FiIFjJCIJKLFkKFlL. (6.40)

The relation between the first and fourth elasticity tensor (spatial tangent) is as follows,

AiJkL = JF −1
Jj (cijkl + σjlδik) F −1

Ll ,

where, aijkl = cijkl + σjlδik.
(6.41)

25

Sometimes a so-called third elasticity tensor, aijkl, (Bower, 2009) is defined in terms of
Kirchhoff stress, τ = Jσ, as follows,

aijkl = cijkl + τjlδik,

where, cijkl = FiIFjJCIJKLFkKFlL = J−1cijkl.
(6.42)

Finally, the relation between the first and third elasticity tensor is,

AiJkL = F −1
Jj aijklF

−1
Ll . (6.43)

6.5 Some notes on fourth-order tensors

A generic fourth tensor is defined by,

A = B⊗C = BijCklei ⊗ ej ⊗ ek ⊗ el = Aijklei ⊗ ej ⊗ ek ⊗ el (6.44)

Two fourth-order unit tensors are defined as,

I : A = A and I : A = A⊤,

where, I = δikδjlei ⊗ ej ⊗ ek ⊗ el,

and I = δilδjkei ⊗ ej ⊗ ek ⊗ el.

(6.45)

For convenience, two additional fourth-order tensors, S and W, are given by,

S = 1
2
(︂
I + I

)︂
⇒ Sijkl = 1

2 (δikδjl + δilδjk) ,

W = 1
2
(︂
I− I

)︂
, ⇒ Wijkl = 1

2 (δikδjl − δilδjk)
(6.46)

With these definitions, I can write,

sym(A) = S : A, skw(A) = W : A. (6.47)

Finally, another important fourth-order tensor is given by the tensor multiplication of the
second-order identity tensor,

1⊗ 1 = δijδklei ⊗ ej ⊗ ek ⊗ el (6.48)

If A is a fourth-order tensor and B is a second-order tensor, then their double contraction
gives,

C = A : B = AijklBklei ⊗ ej. (6.49)

26

7 Constitutive model specific material and spatial tangents

7.1 Quasi-incompressible Neo-Hookean model

The strain energy density, Ψ, for a quasi-incompressible Neo-Hookean type material is given
by,

Ψ = µ

2 (I1 − 3− 2 ln J) + κ

2 (ln J)2. (7.1)

where, I1 = tr(C) and J = det(F), and µ and κ are the material parameters representing
the shear modulus and bulk modulus. The second Piola-Kirchhoff stress, S, is given by,

S = µ(1−C−1) + κ(ln J)C−1. (7.2)

Let me recall some useful tensor calculus identities,

∂C
∂C

= 1,
∂I1

∂C
= 1,

∂I2

∂C
= 2C,

∂I3

∂C
= J2C,

∂J

∂C
= J

2 C−1,
∂ ln J

∂C
= 1

2C−1,(︄
∂C−1

∂C

)︄
IJKL

= −1
2
(︂
C−1

IKC−1
JL + C−1

JKC−1
IL

)︂
= IC−1 .

(7.3)

Now, the material tangent, C, is given by,

C = 2 ∂S
∂C

= κC−1 ⊗C−1 − 2(µ− κ ln J)IC−1 ,

⇒ CIJKL = κC−1
IJ C−1

KL + (µ− κ ln J)
(︂
C−1

IKC−1
JL + C−1

JKC−1
IL

)︂
.

(7.4)

The Cauchy stress, σ, is given by,

σ = µ

J
(b− 1) + κ

J
(ln J)1. (7.5)

The spatial tangent, c, is given by,

cijkl = J−1FiIFjJFkKFlLCIJKL,

= κ

J
δijδkl + µ− κ ln J

J
(δikδjl + δilδjk),

⇒ c = κ

J
1⊗ 1− 2

J
(µ− κ ln J)i,

(7.6)

where,
i = F⊘ F : IC−1 : F⊤ ⊘ F⊤,

= −1
2 FiIFjJFkKFlL

(︂
C−1

IKC−1
JL + C−1

JKC−1
IL

)︂
,

= −1
2 (δikδjl + δilδjk) .

(7.7)

27

7.2 Quasi-incompressible Arruda-Boyce model

The strain energy density, Ψ, for a quasi-incompressible Arruda-Boyce type model is given
by,

Ψ = µ

[︄
λ2

L

(︄
λcβc

λL
+ ln βc

sinh βc

)︄
−
(︄

λL

3

)︄
ln J

]︄
+ κ

2 (ln J)2,

where, βc = L−1
(︄

λc

λL

)︄
, and λc =

√︄
I1

3 ,

(7.8)

The second Piola-Kirchhoff stress, S, is given by,

S = µ

(︄
λL

3λc

βc

)︄
1−

[︄
µλL

3 − κ(ln J)
]︄

C−1. (7.9)

The Cauchy stress, σ, is given by,

σ = µ

J

(︄
λL

3λc

βc

)︄
b−

[︄
µλL

3J
− κ

J
(ln J)

]︄
1. (7.10)

I will use the following intermediate results to derive the material tangent for the Arruda-
Boyce model.

∂λc

∂C
= ∂

∂C

⎛⎝√︄I1

3

⎞⎠ = 1
2
√

3
I

−1/2
1 1 = 1

6λc

1,

∂λ−1
c

∂C
= −1

λ2
c

∂λc

∂C
= −1

6λ3
c

1,

∂βc

∂C
= ∂βc

∂
(︂

λc

λL

)︂ ∂
(︂

λc

λL

)︂
∂C

= 1
2
√

3λL

∂βc

∂
(︂

λc

λL

)︂I
−1/2
1 1 = 1

6λLλc

∂βc

∂
(︂

λc

λL

)︂1,

∂ ln J

∂C
= 1

2C−1

(7.11)

The material tangent, C, is given by,

C = 2 ∂S
∂C

= 2µλL

3

(︄
1
λc

∂βc

∂C
+ βc

∂λ−1
c

∂C

)︄
1+ 2κ

(︄
∂ ln J

∂C

)︄
C−1 − 2

[︄
µλL

3 − κ(ln J)
]︄

∂C−1

∂C
,

= µ

9λ2
c

⎛⎝ ∂βc

∂
(︂

λc

λL

)︂ − λL

λc

βc

⎞⎠1⊗ 1+ κC−1 ⊗C−1 − 2
[︄

µλL

3 − κ(ln J)
]︄

IC−1 .

(7.12)

28

Using index notation, I can write,

CIJKL = µ

9λ2
c

⎛⎝ ∂βc

∂
(︂

λc

λL

)︂ − λL

λc

βc

⎞⎠ δIJδKL + κC−1
IJ C−1

KL

+
[︄
µ

(︄
λL

3λc

)︄
− κ(ln J)

]︄ (︂
C−1

IKC−1
JL + C−1

JKC−1
IL

)︂ (7.13)

The spatial tangent, c, can be calculated as,

cijkl = J−1FiIFjJFkKFlLCIJKL,

= µ

9Jλ2
c

⎡⎣ ∂βc

∂
(︂

λc

λL

)︂ − λL

λc

βc

⎤⎦ bijbkl + κ

J
δijδkl + J−1

[︄
µλL

3 − κ(ln J)
]︄

(δikδjl + δilδjk) ,

⇒ c = µ

9Jλ2
c

⎡⎣ ∂βc

∂
(︂

λc

λL

)︂ − λL

λc

βc

⎤⎦b⊗ b + κ

J
1⊗ 1+ 2J−1

[︄
µλL

3 − κ(ln J)
]︄

i.

(7.14)

In evaluating the stress and material (or spatial) tangent for the Arruda-Boyce model, the
inverse Langevin function, L−1(x) needs to be evaluated. No exact formula is available for
this function, and it is often approximated using Padé approximation or Taylor series. Padé
approximation often behaves poorly in the limit of x = 1 and Taylor series requires additional
terms to be included. A simple piecewise approximation is also possible (Bergström, 1999)
to evaluate the Inverse Langevin function as given below,

L−1(x) =

⎧⎨⎩1.31446 tan(1.58986x) + 0.91209x if |x| < 0.84136,

1/(sign(x)− x) if 0.84136 ≤ |x| < 1
(7.15)

It is straightforward to calculate the derivative of this piecewise approximation of the Langevin
function.

DL−1(x) =

⎧⎨⎩2.0898073756 tan2(1.58986x) + 3.0018973756 if |x| < 0.84136,

1/(sign(x)− x)2 if 0.84136 ≤ |x| < 1
(7.16)

8 Implementation of displacement element in ABAQUS/Standard

This section will list the total Lagrangian and updated Lagrangian finite element formu-
lation procedures for finite strain hyperelastic materials. By changing the material point
constitutive calculation, these procedures can be used for finite viscoelasticity and plasticity.
It is rare to use PK-I stress-based total Lagrangian formulation, hence I will skip it here.
However, I should note that the procedure is the same as linear elasticity except for the form
of the strain-displacement matrix and constitutive relation.

Compared to the PK-II stress-based total Lagrangian formulation, I mapped the parent

29

element to the current configuration and the reference configuration to calculate the defor-
mation gradient, F. However, it is possible to store the deformation gradient, F, as a state
variable and use the current configuration mapping to calculate the incremental deformation
gradient. I should mention the element jacobian (Jξ vs. jξ) being used during the numerical
integration of the element stiffness (tangent) matrix and residual vector.

8.1 Algorithmic procedure for total and updated Lagrangian element

Procedure 2: PK-II stress-based total Lagrangian user element subroutine (UEL)
implementation of hyperelasticity in Abaqus/ Standard

Input : PROPS, COORDS, JELEM, JTYPE, NNODE, NDOFEL, TIME, DTIME, U,
DU, V, A, PREDEF, JDLTYP, NDLOAD, MDLOAD, DDLMAG, ALMAG

Output: AMATRX, RHS, PNEWDT, ENERGY, SVARS

1 Get nInt← PROPS and nDim, nTens← JTYPE
2 Initialize: {Na

u, Ba
u, Ga

u, Nu, Bu, Gu, ΣF, ΣS, ke
uu, Re

u} = 0
3 Get nodal displacement vectors of the element: ue, ∆ue

4 Reshape nodal coordinate and displacement vector in matrix form: xe, [ue], ∆ue

5 Get wint,ξint ← SUBROUTINE gaussQuadrtr(nDim, nNode)
6 for k = 1 to nInt do
7 Get N, ∂Nu

∂ξ
← SUBROUTINE interpFunc(nDim, nNode)

8 Calculate: ∂X
∂ξ

= xe
∂Nu
∂ξ

// map to the reference configuration to calculate F

9 Calculate: ∂Nu
∂X = ∂Nu

∂ξ

(︂
∂X
∂ξ

)︂−1
and Jξ

10 Calculate deformation gradient: F = 1+ [ue]∂Nu
∂X

11 for i = 1 to nNode do
12 Form Na

u(nDim, NDOFEL), Ba
u(nTens, nDim), and Ga

u(nDim2, nDim) matrices
13 Nu(1 : nDim, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Na

u(1 : nDim, 1 : nDim)
14 Bu(1 : nTens, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Ba

u(1 : nTens, 1 : nDim)
15 Gu(1 : nDim2, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Ga

u(1 : nDim2, 1 : nDim)
16 end

// end of nodal point loop
17 Get S, e,σ, DC ← SUBROUTINE umatHyperelastic(PROPS, F) // UMAT

returns the constitutive response
18 Form ΣF(nDim ∗ (i− 1) + 1 : nDim ∗ i, nDim ∗ (j− 1) + 1 : nDim ∗ j) = F

// double nested for loop over nNode with i=j
19 Form ΣS(nDim ∗ (i− 1) + 1 : nDim ∗ i, nDim ∗ (j− 1) + 1 : nDim ∗ j) = Sij1

// double nested for loop over nDim

20 Calculate: ke
uu = ke

uu + wint(k) det(Jξ)
(︂
G⊤

u ΣSGu + (BuΣF)⊤DC(BuΣF)
)︂

21 Calculate: Re
u = Re

u − wint(k) det(Jξ)
(︂
(BuΣF)⊤S− ρRN⊤

u b
)︂

22 end
// end of integration point loop

23 Assign AMATRX = ke
uu and RHS = Re

u

30

Procedure 3: Cauchy stress-based updated Lagrangian user element subroutine
(UEL) implementation of hyperelasticity in Abaqus/ Standard

Input : PROPS, COORDS, JELEM, JTYPE, NNODE, NDOFEL, TIME, DTIME, U,
DU, V, A, PREDEF, JDLTYP, NDLOAD, MDLOAD, DDLMAG, ALMAG

Output: AMATRX, RHS, PNEWDT, ENERGY, SVARS

1 Get nInt← PROPS and nDim, nTens← JTYPE
2 Initialize: {Na

u, Ba
u, Ga

u, Nu, Bu, Gu, Σσ, ke
uu, Re

u} = 0
3 Get nodal displacement vectors of the element: ue, ∆ue

4 Calculate updated coordinate: xe = xe + ue

5 Reshape nodal coordinate and displacement vector in matrix form: xe, [ue], ∆ue

6 Get wint,ξint ← SUBROUTINE gaussQuadrtr(nDim, nNode)
7 for k = 1 to nInt do
8 Get N, ∂Nu

∂ξ
← SUBROUTINE interpFunc(nDim, nNode)

9 Calculate: ∂X
∂ξ

= xe
∂Nu
∂ξ

// map to the reference configuration to calculate F

10 Calculate: ∂Nu
∂X = ∂Nu

∂ξ

(︂
∂X
∂ξ

)︂−1
and Jξ

11 Calculate: ∂x
∂ξ

= xe
∂Nu
∂ξ

// map to the current configuration

12 Calculate: ∂Nu
∂x = ∂Nu

∂ξ

(︂
∂x
∂ξ

)︂−1
and jξ

13 Calculate deformation gradient: F = 1+ [ue]∂Nu
∂X

14 for i = 1 to nNode do
15 Form Na

u(nDim, NDOFEL), Ba
u(nTens, nDim), and Ga

u(nDim2, nDim) matrices
16 Nu(1 : nDim, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Na

u(1 : nDim, 1 : nDim)
17 Bu(1 : nTens, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Ba

u(1 : nTens, 1 : nDim)
18 Gu(1 : nDim2, nDim ∗ (i− 1) + 1 : nDim ∗ i) = Ga

u(1 : nDim2, 1 : nDim)
19 end

// end of nodal point loop
20 Get e,σ, D← SUBROUTINE umatHyperelastic(PROPS, F) // UMAT returns

the constitutive response
21 Form Σσ(nDim ∗ (i− 1) + 1 : nDim ∗ i, nDim ∗ (j− 1) + 1 : nDim ∗ j) = σij1

// double nested for loop over nDim

22 Calculate: ke
uu = ke

uu + wint(k) det(jξ)
(︂
G⊤

u ΣSGu + B⊤
u DBu

)︂
23 Calculate: Re

u = Re
u − wint(k) det(jξ)

(︂
B⊤

uσ− ρN⊤
u b
)︂

24 end
// end of integration point loop

25 Assign AMATRX = ke
uu and RHS = Re

u

Similar to the previous case, the constitutive behavior of the material can be changed by
including a different subroutine corresponding to finite strain plasticity or finite strain vis-
coelasticity, etc. instead of using umatHyperelastic. Similar to the previous case, traction
and body force can be applied using built-in Abaqus elements.

31

8.2 Brief description of the user element subroutine and input files in GitHub
repository

The user element subroutine, uel_nlmech_pk2.for, available in the GitHub repository im-
plemented PK-II stress-based total Lagrangian element as an example. The structure of the
subroutine shares a large similarity with the isotropic linear elastic subroutine described in
the previous section. Similar to the previous case, a total of 8 types of elements are available;
4 of them are 3D continuum solid elements and 4 of them are 2D plane-strain elements with
reduced and full-integration schemes. The same technique of overlaying built-in Abaqus
elements on the user element has been used for post-processing the output results.

In this implementation, two different options were made available to evaluate the hyperelastic
constitutive response; (a) Neo-Hookean material and (b) Arruda-Boyce material. Henceforth,
the properties to be specified in the input file are different than the linear elastic case. The
following table lists the properties that need to be specified in the input file:

Name of the property Property location UEL variable

Shear modulus, µ props(1) G
Bulk modulus, κ props(2) kappa

Locking stretch λL props(3) lam_L

No of integration points jprops(1) nInt
Type of material jprops(2) matFlag

No of post-processing variables jprops(3) nPostVars

Table 3: List of properties for the hyperelastic element.

Users should note the following scenarios when using the code:

1. matFlag=1 corresponds to Neo-Hookean material and in this case, the user needs to
specify lam_L=0.0 whereas matFlag=2 corresponds to Arruda-Boyce material which has
a finite locking stretch value that user needs to specify.

2. Since no special formulation has been implemented to alleviate volumetric locking, for
nearly incompressible hyperelastic materials, it is advised to use higher order elements
with κ ≤ 100µ.

9 Additional resources

• Abaqus/ Standard documentation from Dassault Systèmes.
• Supplementary material of Chester et al., 2015.
• Course web page of EN2340 Computational Methods in Solid Mechanics by Prof. Allan

F. Bower: https://www.brown.edu/Departments/Engineering/Courses/En2340/.
• EN2340_FEA code on GitHub: https://github.com/albower/EN234_FEA.

32

https://www.brown.edu/Departments/Engineering/Courses/En2340/
https://github.com/albower/EN234_FEA

Bibliographic references

Bergström, B. (1999). Large strain time-dependent behavior of elastomeric materials [Doc-
toral dissertation, Massachusetts Institute of Technology].

Bower, A. F. (2009, October 5). Applied Mechanics of Solids (0th ed.). CRC Press. https:
//doi.org/10.1201/9781439802489

Chester, S. A., Di Leo, C. V., & Anand, L. (2015). A finite element implementation of a
coupled diffusion-deformation theory for elastomeric gels. International Journal of
Solids and Structures, 52, 1–18. https://doi.org/10.1016/j.ijsolstr.2014.08.015

de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Non-linear
Finite Element Analysis of Solids and Structures (2nd ed.). John Wiley & Sons, Inc.

Reddy, J. N. (2015). An Introduction to Nonlinear Finite Element Analysis. Oxford Univer-
sity Press. https://doi.org/10.1093/acprof:oso/9780198525295.001.0001

Zienkiewicz, O. C., Taylor, R. L., & Fox, D. (2014). The Finite Element Method for Solid
and Structural Mechanics (7th ed). Elsevier/Butterworth-Heinemann.
OCLC: ocn858011693.

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The Finite Element Method: Its Basis
and Fundamentals (Seventh edition). Elsevier, Butterworth-Heinemann.
OCLC: ocn852808496.

33

https://doi.org/10.1201/9781439802489
https://doi.org/10.1201/9781439802489
https://doi.org/10.1016/j.ijsolstr.2014.08.015
https://doi.org/10.1093/acprof:oso/9780198525295.001.0001

	Brief review of isotropic linear elastostatics
	Displacement-based finite element formulation
	Strong form of the governing equations of boundary value problem
	Weighted residual based weak formulation of the governing equations
	Discretization and Buvnov-Galerkin finite element approximation

	Isoparametric element formulation and numerical integration
	Evaulation of volume integrals

	Implementation of displacement element in ABAQUS/Standard
	Algorithmic procedure for small strain displacement element
	Brief description of the user element subroutine in GitHub repository
	Brief description of keywords in Abaqus input file

	A brief review of finite elasticity (hyperelasticity)
	Finite element formulation for finite strain eleasticity
	PK-I stress-based total Lagrangian finite element formulation
	PK-II stress-based total Lagrangian finite element formulation
	Cauchy stress-based updated Lagrangian finite element formulation
	Relation between different elasticity tensors (or tangents)
	Some notes on fourth-order tensors

	Constitutive model specific material and spatial tangents
	Quasi-incompressible Neo-Hookean model
	Quasi-incompressible Arruda-Boyce model

	Implementation of displacement element in ABAQUS/Standard
	Algorithmic procedure for total and updated Lagrangian element
	Brief description of the user element subroutine and input files in GitHub repository

	Additional resources
	Bibliographic references

