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ABSTRACT
Fish detect predators, flow conditions, environments and each other
through pressure signals. Lateral line ablation is often performed to
understand the role of pressure sensing. In the present study, we
propose a non-invasive method for reconstructing the instantaneous
pressure field sensedbya fish’s lateral line system from two-dimensional
particle image velocimetry (PIV) measurements. The method uses a
physics-informed neural network (PINN) to predict an optimized solution
for the pressure field near and on the fish’s body that satisfies both the
Navier–Stokes equations and the constraints put forward by the PIV
measurements. The method was validated using a direct numerical
simulation of a swimming mackerel, Scomber scombrus, and was
applied to experimental data of a turning zebrafish, Danio rerio. The
results demonstrate that this method is relatively insensitive to the
spatio-temporal resolution of the PIV measurements and accurately
reconstructs the pressure on the fish’s body.

KEY WORDS: Physics-informed learning, Biolocomotion, Pressure
sensing, Particle image velocimetry, Pressure reconstruction

INTRODUCTION
Fish utilize a sensory system, i.e. the lateral line, for detecting the
rapidly changing pressure of the flow, and they leverage these
pressure signals to sense the surrounding environment (Liao et al.,
2003; Ristroph and Zhang, 2008; McHenry et al., 2009; Ashraf et al.,
2017; Verma et al., 2018; Halsey et al., 2018; Haehnel-Taguchi et al.,
2018; Li et al., 2020, 2022; Ristroph et al., 2015). Ablation of the
lateral line is a commonly used method to study its role in a fish’s
response to external stimuli (Montgomery et al., 1997; Liao, 2006;
McHenry et al., 2010; Mekdara et al., 2018, 2021), but the method is
highly invasive. To better understand how fish react to unsteady
flows, it is necessary to instantaneously intercept the pressure signals
received by the fish in a non-invasive manner.
The most utilized non-invasive method is to reconstruct the

pressure field from velocity measurements (van Oudheusden,
2013). Traditionally, there have been two main categories of this
approach. The first computes the pressure field from the Poisson
equation, i.e. as shown below for an inviscid flow (Fujisawa et al.,
2005; de Kat and and van Oudheusden, 2012; Shams et al., 2015;

Neeteson and Rival, 2015; Pirnia et al., 2020):

r2p ¼ �r r � Du
Dt

� �
; ð1Þ

where p is the pressure, u is the velocity vector, ρ is the fluid
density and Du/Dt is the material derivative. However, Charonko
et al. (2010) and Pan et al. (2016) have shown that the Poisson-based
solvers are sensitive to the grid resolution, flow type, velocity
measurement errors, the shape of the immersed body and the type
of boundary conditions that are applied. Furthermore, as Dabiri
et al. (2014) suggested, when applied to the study of animal
locomotion under low or moderate Reynolds number (Re), it is
difficult to predetermine the appropriate boundary condition at
the fluid–body interface. Therefore, the pressure reconstruction
could benefit from new methods that are less sensitive to these
constraints.

The second category of techniques for pressure reconstruction is
the direct integration of the pressure gradient along multiple
different paths (Liu and Katz, 2006, 2013; Dabiri et al., 2014; Liu
and Moreto, 2021; Wang et al., 2019; Agarwal et al., 2021), as
shown below:

rp ¼ �r
Du

Dt
� nr2u

� �
: ð2Þ

Here, ν is the kinematic viscosity of the fluid. Multi-directional
integration schemes utilize the scalar property of pressure, i.e. its local
value is independent of the path taken, to improve the accuracy of the
pressure estimation. Using this approach, Dabiri et al. (2014)
developed an unsteady pressure reconstruction algorithm, known
as Queen 2.0, to study animal locomotion (Dabiri et al., 2020;
Thandiackal and Lauder, 2020; Costello et al., 2021; Gemmell et al.,
2021; Thandiackal et al., 2021; Tack et al., 2021; Guo et al., 2022).

However, Queen 2.0 does have its limitations. Firstly, to integrate
the pressure gradient, a zero-pressure boundary condition is applied at
all external boundaries, which is not always accurate. As demonstrated
by He et al. (2020), when, for example, the wake of a turbulent jet
crosses one of the boundaries, the pressure reconstruction by Queen
2.0 becomes less accurate. Secondly, Queen 2.0 andmost of the direct
integration methods do not incorporate information at the fluid–body
interface into the pressure reconstruction. This is typically because the
velocity measurements, especially those obtained in particle image
velocimetry (PIV) experiments, nearest to the body are often
unreliable. Thus, to avoid this error from propagating to the
pressure estimation, the integration paths are terminated before
reaching the fluid–body interface. To then obtain the surface pressure,
one would typically have to extrapolate from the nearest neighbor
node in the surrounding pressure field. Pirnia et al. (2020)
demonstrated that such an approach can provide a very accurate
prediction of the surface pressure around stationary objects. However,
the error increases greatly when the object is free to deform. They alsoReceived 22 September 2022; Accepted 20 March 2023
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showed that by incorporating the kinematics of the immersed body
into the pressure reconstruction algorithm, the relative error in the
surface pressure prediction can be sufficiently reduced.
These results stress the need to have a pressure reconstruction

algorithm that: (1) provides the user with the flexibility to alter the
applied boundary conditions and (2) incorporates the kinematics
of the undulating body into the pressure reconstruction. In recent
years, new types of pressure reconstruction algorithms have been
developed (Wang et al., 2017; McClure and Yarusevych, 2017;
Jeon et al., 2018; Huhn et al., 2016; Cai et al., 2020; Wang et al.,
2018; He et al., 2020; Zhang et al., 2020); although these methods
have made significant progress in other aspects of pressure
reconstruction from velocity measurements, they do not correct
the highlighted limitations of Queen 2.0. Furthermore, their
applicability to flow fields involving actively deforming bodies
remains relatively untested.
Therefore, in this paper, we propose a new method to reconstruct

the pressure field around undulating bodies based on physics-
informed neural networks (PINNs) (Cai et al., 2022). The most
important benefit of using PINNs is their flexibility. PINNs can deal
with any boundary condition or no boundary condition, they do not
need to deal with the complex grid designs required to incorporate
the kinematics of the immersed body, they are less sensitive to the
spatio-temporal resolution and noise, and they can patch the results
in regions where velocity field data are not available (Cai et al.,
2021; Jin et al., 2021; Di Leoni et al., 2022 preprint; Molnar and
Grauer, 2022; Du et al., 2023; Molnar et al., 2023; Zhou et al.,
2023).
Previous research performed by Raissi et al. (2020) has utilized

PINNs to reconstruct the pressure field around a stationary object.
To build on this work, we apply the method to reconstruct not only
the pressure field around a swimming fish but also the pressure
signals sensed by its lateral line.

MATERIALS AND METHODS
Physics-informed neural networks
The general idea of the proposed method is not to derive pressure
from the velocity field via integration, but to seek an optimized
solution that simultaneously satisfies the governing equations and the
constraints put forward by the measurements in a Euclidean norm
(L2) sense. The machine learning architecture provides an efficient
way to meet these two requirements by iteratively updating the
trainable parameters of the network to minimize a loss function, L.
The loss function can be decomposed into four main terms: the
measured data (Ldata), the imposed initial conditions (LIC), the
imposed boundary conditions (LBC) and the governing equations
(LNS). Thus, the loss function can be expressed as:

L ¼ l1Ldata þ l2LIC þ l3LBC þ l4LNS; ð3Þ

where λ1–4 are the weighting coefficients for the different loss terms.
In this study, a fully connected feed-forward neural network is used to
approximate the solution of the Navier–Stokes equations to recover
the two-dimensional (2D) pressure field around a swimming fish. The
PINN takes the spatio-temporal coordinates as inputs and performs a
series of algebraic operations as they pass through 12 hidden layers,
each of which contains 120 neurons. The output of the last layer,K, is
used to approximate the solution of the Navier–Stokes equations. If
the input variables to the kth hidden layer are denoted zk (k=1,2,

3,...K–1), then the neural network can be represented as:

z0 ¼ ðx; y; tÞ; ð4Þ
zk ¼ sðgkWkzk�1 þ bkÞ; 1 � k � K � 1; ð5Þ

zk ¼ gkWkzk�1 þ bk ; k ¼ K; ð6Þ
where x and y denote the spatial coordinates, t denotes the temporal
coordinates, Wk, bk and gk denote the trainable parameters of the
network (weights matrix, bias and gamma vectors, respectively)
and σ(·) denotes the activation function. In this study, a sigmoid
activation function was used. To determine an appropriate network
size, a parametric study was performed in which the number of layers
and neurons per layer were systematically varied. For each network
size, the global relative root mean square error (RMSE) in the velocity
and pressure fields was computed. In the Supplementary Materials
and Methods, Fig. S1 shows that a network size of 12 layers
consisting of 120 neurons provided the most accurate solution for the
pressure field.

In this application, how accurately the PINN predictions match
the measured time-series of the 2D velocity fields can be quantified
by the following data loss term:

Ldata ¼ 1

Nd

XNd

i

ðuipred � uidataÞ
2 þ ðvipred � vidataÞ

2

" #
; ð7Þ

where Nd is the number of training data points sampled at each
iteration, and u and v are the lateral and transverse velocities,
respectively. The subscript ‘pred’ refers to the predictions by the
PINN, and the subscript ‘data’ refers to the velocities obtained from
the simulation or PIV results. The training data include the velocity
vectors in the domain over the entire time.

To enforce the physics of the problem, the residuals of the
Navier–Stokes equations are also evaluated. In general, the equation
loss term consists of the residuals of the dimensionless momentum
equations and continuity equation. However, because a 2D slice is
extracted from a 3D velocity field, the divergence free condition is
not enforced. Furthermore, because the third component of the
velocity field is missing, the product of the out-of-plane velocity and
the spatial derivative of u and v in that direction is assumed to be
negligible. Therefore, it is important to stress that the current method
is only applicable to cases where 3D effects are weaker. This can be
achieved by ensuring the PIV plane passes through the midline
of the fish’s body and that the fish’s motion lies within this plane.
The Navier–Stokes residuals utilized in this framework are shown as
follows:

LNS ¼ 1

Ne

X2
j

XNe

i

ðejðxi; yi; tiÞÞ2
" #

; ð8Þ

e1 ¼ @tuþ u@xuþ v@yuþ px � Re�1 ð@xxuþ @yyuÞ; ð9Þ
e2 ¼ @tvþ u@xvþ v@yvþ py � Re�1 ð@xxvþ @yyvÞ: ð10Þ

Here, Ne is the number of data points sampled at each iteration to
evaluate the Navier–Stokes residuals. The partial derivatives in the
governing equations are computed using automatic differentiation
(Baydin et al., 2018), which calculates the derivatives of the
outputs (u,v,p) with respect to the network inputs (x,y,t) directly in
the computational graph, without any finite differencing methods
utilized in more classical computational methods. It is important to
stress that the Navier–Stokes residuals can be evaluated at points
where measured data are not available, thus providing a means for
increasing the resolution of the measured data, which is grounded in
physics.
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The applied initial and boundary conditions depend on
the problem. Because the network is in essence solving the
Navier–Stokes equations, the applied initial and boundary
conditions can involve either pressure or velocity. Compared with
other methods relying on integrating pressure from boundaries
to the point of interest, this method does not require a priori
knowledge of the boundary conditions and certainly does not
enforce the wrong boundary condition when it is not available.
Furthermore, PINNs do not rely on a traditional Cartesian grid
because they simply take any spatio-temporal coordinate as input
and output velocity and pressure. This feature is extremely helpful in
dealing with complex animal locomotion problems because the
undulating body and the fluids grid do not always coincide with one
another. But for PINNs, there is no need to extrapolate from a grid to
the body or back. The kinematics of the body can be input as a
boundary condition into the network with ease.
For all cases in this study, a non-penetration boundary condition is

enforced on the surface of the fish’s body, through which information
of the fish kinematics is utilized. Therefore, the boundary condition is
a measure of how well the PINN prediction matches the measured
velocity normal to the fish’s body. In addition, boundary conditions
can be enforced at external boundaries. These may include a zero-
pressure boundary condition and an inlet velocity boundary
condition. The boundary condition loss terms that were enforced in
this study are shown as follows:

L1
BC ¼ 1

NBC

XNBC

i

½ðunÞipred � ðunÞidata�2V
" #

; ð11Þ

L2
BC ¼ 1

NBC

XNBC

i

½ðuinÞipred � ðuinÞidata�2w þ ½ðvinÞipred � ðvinÞidata�2w
" #

;

ð12Þ

L3
BC ¼ 1

NBC

XNBC

i

½ pipred � 0�2w
" #

; ð13Þ

where un denotes the normal velocity, uin denotes the lateral
component of the inlet velocity, vin denotes the transverse
component of the inlet velocity, Ω denotes the spatio-temporal
coordinates of the fish’s body, w denotes the spatio-temporal
coordinates at the domain boundaries and NBC denotes the number
of points on the boundary that were sampled at each iteration. There
were no initial conditions applied to any of the cases in this study.
To minimize the loss function and optimize the trainable

parameters of the network, the ADAM optimizer was used
(Kingma and Ba, 2015 preprint). The mini-batch size was set to
10,000. Therefore, at each iteration, a maximum of 10,000 spatio-
temporal points were randomly sampled from the entire training
dataset to evaluate the terms of the loss functions. The PINN was
trained on an NVIDIA a100 graphics card. For each case studied,
the network was trained for 1500 epochs, or 1500 passes through the
entire dataset, and took approximately 10 h to complete. As shown
in the Supplementary Materials and Methods, 1500 epochs
sufficiently balances the accuracy of the PINN predictions with
the computational cost.
It is important to note that the purpose of the PINN framework is

to uncover hidden information from visualizations of the flow field.
For this application, the goal is to recover pressure from velocity
measurements. Therefore, for every new velocity field, the network
must be retrained to obtain the corresponding pressure field. The
trained network is not meant to predict the pressure field for a wide

range of different flow types, nor is it meant to be used to develop
reduced-order models.

In theory, the PINN method can be applied to study undulatory
locomotion over a range of Reynolds numbers if the animal’s
oscillatory motion is primarily 2D and lies in the same plane as
the PIV data. To satisfy these two conditions, two datasets of the
flow produced by the oscillatory motion of carangiform swimmers
were selected. One is the direct numerical simulation (DNS) of a
swimming mackerel, which will be used to quantify the accuracy of
the method. The other one is an experimental dataset of a turning
zebrafish, Danio rerio.

Single fish validation dataset
To test the accuracy of the proposed method, it was applied to a
direct numerical simulation of a swimming fish using the ViCar3D,
a sharp-interface immersed boundary method (Mittal et al., 2008).
The 3D model of the fish is based on the common mackerel
(Scomber scombrus). The fish model consists of body and caudal
fin, and the caudal fin is modelled as a zero-thickness membrane.
A carangiform swimming motion is prescribed by imposing the
lateral displacement of the fish body and fin using the following
prescription: Δy/L=A(x)sin(kx–2πft+φ); A(x)=a0+a1(x/L)+a2(x/L)2,
where Δy is the lateral displacement, L is the body length, x is the
axial coordinate along the body starting from the nose, f is the tail
beat frequency, φ is a phase and A(x) is the amplitude modulation
function. The parameters are set based on literature (Videler
and Hess, 1984) to the following values: a0=0.02, a1=–0.08
and a2=0.16. The wave number is set to k=2π/L and the flow
Reynolds number based on the body length and tail beat frequency,
ReL=L2f/ν, is set to 5000.

In the present simulation, the swimming motion is imposed on a
‘tethered’ fish and a flow velocity is prescribed at the inflow
boundary, such that the net force on the fish is nearly zero, thereby
simulating self-propelled swimming with net zero acceleration.
The fish body and caudal fin are meshed with triangular surface
elements and immersed into the Cartesian volume mesh which
covers the flow domain. The flow domain size is set to
8L×10L×10L, and this is discretized on a very dense grid with
640×320×240 (approximately 49 million) Cartesian cells. The
minimum grid spacing (cell size) is 0.005L and the body length
is covered by 200 grid points. The time-step size used in the
simulation is Δt=0.001/f, which resolves one tail beat cycle with
1000 time-steps. A no-slip, no-penetration boundary condition
is applied on the moving fish body and fin surfaces by using the
sharp-interface, immersed boundary method and a zero-gradient
velocity boundary condition is applied on the other domain
boundaries except the inflow. For the pressure, a zero gradient
boundary condition is applied on the fish body as well as all the
outer boundaries (Seo and Mittal, 2022).

A 2D slice at a z-plane cutting through the midline of the fish’s
body was extracted from the 3D velocity field. The 2D velocity and
pressure gradients on this plane provide the hydrodynamic signals
that a fish would sense with its lateral line. In addition, the
simulation results fully define the fish’s motion as the velocities at
multiple points along the fish’s body are known. The data extracted
from the simulation results, which contain a time series of velocity
fields and defined fish kinematics, were meant to replicate a dataset
that can be obtained through experiments. For example, the velocity
field on a plane cutting through the midline of a fish’s body can
be obtained through PIV, and the fish kinematics could be captured
by imaging the silhouette of the fish body. The spatio-temporal
resolution of the 2D velocity field on this DNS slice was made
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coarser to replicate data that would be obtained from a PIV
experiment with either a large field of view or insufficient
resolution.
To test the sensitivity of the proposed method to the spatial

resolution, the PINN was trained using velocity fields with a grid
size of 0.02L, 0.04L, 0.06L, 0.08L and 0.1L, which would
respectively consist of 50, 25, 17, 13 and 10 grid points along the
length of the fish’s body. For this study, a temporal resolution of
0.02T was used. Here, L is the body length of the fish and T is the
time corresponding to the fish’s motion, i.e. one period of the tail
beating motion. To test the sensitivity of the proposed method to the
temporal resolution, the PINN was trained using velocity fields with
a time step of 0.02T, 0.04T, 0.06T, 0.08T and 0.1T. For this study,
a spatial resolution of 0.02L was used. As previously mentioned,
the Navier–Stokes residuals shown in Eqns 8–10 can be evaluated
at any points in the domain and not necessarily at points where
measurement data are available. Therefore, in the spatio-temporal
resolution study, the Navier–Stokes residuals were always evaluated
on the finest grid even as the velocity measurements became
coarser.
To evaluate the accuracy of the pressure reconstruction along the

surface of the body across all time steps for each spatio-temporal
resolution tested, the relative global RMSE was computed as
follows:

Rel: RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i
fðCpÞipred � ðCpÞiDNSg

2
h ir
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i
fðCp;hÞiDNSg

2
h ir ; ð14Þ

where Ns is the number of surface points, and ðCpÞipred and ðCpÞiDNS
represent the non-dimensional surface pressure predicted by either
the PINN or Queen 2.0 and the simulation data, respectively.
ðCp;hÞiDNS represents the non-dimensional pressure at the fish’s
head. We chose to normalize the global RMSE by the head pressure
because the surface pressure for most of the body is close to zero.
Furthermore, all data points on the body located at x>0.9L were
excluded from the error calculation. As shown by Fig. S3, in this
region the flow becomes highly three-dimensional and thus
naturally the errors in the pressure field will be much larger.
In addition to the resolution of the velocity measurements, it is

also expected that the level of noise in the velocity data will
affect the accuracy of the PINN’s prediction. To test the
sensitivity of the proposed method to noise, various levels of
artificial white noise were systematically added to the velocity data
on the 2D plane extracted from the DNS dataset. The details of this
study and its results are available in the Supplementary Materials
and Methods.
For each dataset analyzed, the loss function to be minimized

consisted of the 2D velocity data loss terms, the residuals of the
x and y momentum equations, and the boundary condition loss
terms. To incorporate the kinematics of the fish’s body, a non-
penetration boundary condition was applied on the surface of the
fish’s body. In addition, a zero-pressure boundary condition was
applied at the top and bottom boundaries because they were
considerably far away from the fish’s motion. An inlet velocity
boundary condition was also applied. However, no boundary
condition was added to the outlet where the pressure is significantly
affected by the wake. Lastly, the divergence free condition was not
enforced because a 2D slice was extracted from a 3D velocity field.
For this application, λ1 and λ3 in Eqn 3 were set to 100, λ2 was set

to zero and λ4 was set to unity. As shown in Fig. S2, by applying

these weights, the PINN can more accurately recover the pressure
field and provide a better prediction of the surface pressure. The
choice of weights is consistent with that reported by Cai et al.
(2021).

Empirical dataset
To test the proposed method on empirical velocity field data, the
PINN was used to reconstruct the 2D pressure field around a turning
zebrafish, Danio rerio. The velocity fields were obtained from PIV
experiments performed by Thandiackal and Lauder (2020).

Before implementing the PINN, the velocity field grid
points inside the fish’s body were removed from the dataset.
Then, the velocity in the direction normal to the zebrafish’s body
was computed at all time steps. Lastly, because the PINN utilizes
the non-dimensional form of the Navier–Stokes equations, the
spatio-temporal coordinates and the velocities were non-
dimensionalized. The characteristic time was the turning time
(0.15 s), the characteristic length was the zebrafish body length
(22 mm), and the characteristic velocity was computed by dividing
the center of mass displacement by the turning time. The Reynolds
number for this case was 918. The dimensionless grid had a spatial
resolution of 0.02 and a temporal resolution of 0.03. A total of 36
time-steps were included in the training dataset.

For the empirical dataset, the loss function to be minimized
consisted of the 2D velocity data loss terms, the x and y momentum
equations, and a loss term needed to enforce a non-penetration
boundary condition on the surface of the fish’s body. In this case,
the zero pressure boundary conditions were not enforced at any of
the boundaries because the zebrafish is relatively close to the top
and left boundaries at various points throughout its turning motion.
It is uncertain whether the pressure field induced by the fish motion
would affect the boundaries. When such uncertainty exists, it is
better not to enforce the zero-pressure boundary condition; rather,
one should allow the PINN to learn what the pressure at the
boundaries should be based on all the information provided during
the training process. The same weighting factors used for the
simulation data were applied in this experimental data as well.

RESULTS AND DISCUSSION
Results for validation dataset
Fig. 1 compares the instantaneous pressure field at t=0.2T obtained
from the simulation with that predicted by the PINN and Queen 2.0.
The results were computed from the simulation dataset with a spatial
resolution of 0.02L and a temporal resolution of 0.02T.

The PINN effectively captures the high-pressure region near the
head, the large pressure variation near the tail and the pressure
fluctuation in the wake. In comparison, Queen 2.0 captures the high-
pressure region at the head but is less accurate near the tail. In fact,
Queen 2.0 does not capture the negative pressure region on the right
side of the fish’s tail (indicated by the arrow in Fig. 1A,C,E) and
instead predicts a region of positive pressure. This results in localized
errors that are much larger than those obtained by the PINN.

The decrease in the errors predicted by the PINN in the tail region
can be attributed to the fact that it utilizes the fish’s kinematics
as another constraint in the pressure reconstruction and resolves
the pressure field up to the fluid–body interface, whereas Queen 2.0
does not. Furthermore, Queen 2.0 enforces a zero-pressure
boundary condition on the right side of the domain. This is not an
accurate boundary condition because the vortices shed by the
beating tail pass through the boundary and result in a non-zero
pressure. For the Queen 2.0 reconstruction, in the wake region,
certain areas exhibit higher errors than others. This is most likely
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because in these localized regions the multi-directional integration
scheme is not able to sufficiently mitigate the error introduced by
applying a zero-pressure boundary condition on the right side of the
domain. For PINNs, there is no need to enforce this boundary
condition and introduce the associated error into the pressure
reconstruction. Thus, for the PINN reconstruction, the error in the
wake region is more uniform. The results in Fig. 1 demonstrate how
the PINN can overcome limitations of Queen 2.0 and provide an
accurate reconstruction of the pressure field surrounding a
swimming fish.
It is important to note that both algorithms produced an increased

error in regions where the out-of-plane velocities are non-negligible
(i.e. in the tail and wake region). This is unsurprising, as only the 2D
flow field was used during the pressure reconstruction. A more
detailed discussion of this result can be found in the Supplementary
Materials and Methods.
To better understand the signals that a fish is sensing with its

lateral line, the pressure reconstruction method must accurately
predict the pressure on the surface of the fish’s body. To obtain the
surface pressure using Queen 2.0, one must extrapolate from
the reconstructed pressure field. As was done in Thandiackal and
Lauder (2020), the pressure at a point on the body is typically
assumed to be the pressure at the closest grid point. In contrast, the
PINN provides the ability to predict the surface pressure directly
without any need for extrapolation.
Fig. 1G,H compares the surface pressure on the left (red) and

right (blue) side of the fish’s body and the pressure difference
between the two sides as predicted by the PINN and Queen 2.0 with
that obtained from the simulation. The pressure difference profiles
are included because Ristroph et al. (2015) have suggested that

the pressure difference is a quantity that fish can sense. The results
demonstrate that, for most of the sensing region of the fish, both
methods can accurately predict the surface pressure, with the PINN
being slightly more accurate particularly in the tail region. This can
be confirmed quantitatively by computing the relative RMSE in
the surface pressure according to Eqn 14. The PINN has a relative
error of 10.1%, whereas Queen 2.0 has an error of 12.0% at this
time step.

Results for the spatio-temporal resolution study
The benefit of using PINNs becomes more apparent as the spatio-
temporal resolution of the velocity field deteriorates. Fig. 2
compares the instantaneous surface pressure at t=0.3T (top row)
and t=0.6T (bottom row) on the right side of the fish’s body
predicted by the simulation with that predicted by the PINN and
Queen 2.0 for each spatial and temporal resolution tested. For
most of the body, the pressure predictions by the PINN collapse
onto the simulation results for each of the spatio-temporal
resolutions tested, although at the coarsest resolution tested,
comparatively larger deviations can be observed in the tail region.
This result indicates that, for most of the body, the accuracy of the
pressure reconstructed by the PINN is not that sensitive to the
spatio-temporal resolution of the measured velocity field. For
Queen 2.0, the accuracy of the surface pressure prediction greatly
decreases as the resolution becomes coarser. The coarser the PIV
grid, the farther the distance between the fish surface to the nearest
PIV grid point. Because Queen 2.0 requires extrapolation from
the grid to the surface, a longer extrapolation distance results in a
larger error, as expected. The decrease in accuracy as a function of
the temporal resolution, in contrast, can most likely be attributed to
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the fact that the finite difference approximation of the material
derivative shown in Eqn 2 becomes less accurate with a larger time
step.
Fig. 2E,F shows how the relative global RMSE in the surface

pressure prediction by eachmethod varies as a function of the spatial
and temporal resolution. For Queen 2.0, the error quickly grows as

the resolution becomes coarser, but for the PINN the error profile
remains relatively flat across all temporal resolutions tested. The
error only begins to really rise as the spatial resolution exceeds
0.04L. Note that the errors reported in Fig. 2E,F only represent the
global average; the improvement of local pressure prediction could
be much larger than these values.
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Results for empirical dataset
Fig. 3A–F compares the instantaneous velocity field obtained
from the PIV experiments with that reconstructed by the PINN.
The PINN can accurately reconstruct the velocity fields, with
absolute errors not exceeding 0.1. Because the optimization
process was regularized by the Navier–Stokes residuals, an
accurate reconstruction of the velocity field would imply that
the reconstructed pressure field is also accurate. Fig. 3G,H shows the
reconstructed pressure field around a turning zebrafish and the
pressure distribution along its body directly predicted by the PINN.
Although it is difficult to make a direct comparison to Queen 2.0
because the ground truth pressure field is unknown, the results from
the validation case suggest that the PINN prediction would be
more accurate because it resolves the pressure field all the way to the
body, it incorporates the zebrafish’s kinematics into the pressure
reconstruction, and does not enforce a zero-pressure boundary
condition because the zebrafish’s motion may induce flows crossing
the boundaries.

Comparative advantage
In this paper, a machine learning-based method for reconstructing
the 2D pressure field around swimming fish from PIV
measurements was developed. PINNs provide the user with
greater flexibility in applying boundary conditions and provide a
framework for incorporating the kinematics of the body into the
pressure reconstruction process without requiring any deforming
grids. When compared with Queen 2.0, at the highest resolution of
the PIV data, PINNs provide a small improvement in accuracy, but
as the resolution decreases, PINNs show a clear advantage with
much smaller reconstruction uncertainty. The applicability of
PINNs to experimental data with no clear knowledge of the
boundary condition was also demonstrated.
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