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Turbulence can disperse a concentrated parcel of pollutants at a rate over nine orders of magnitude higher
than its purely diffusive counterpart. One intriguing signature of turbulent dispersion is its superdiffusive
scaling. However, the universality of this scaling law is still in question. By leveraging a new laboratory
facility, particle pairs with small initial separations can be tracked over four decades of separation in time
and five decades of separation in squared displacement, thereby observing the full range of dispersion
scaling laws. The results show that the classical Richardson cubic scaling will be reached not for an initial
separation asymptotically close to zero but at a critical value, and this value does not appear to depend on
the Reynolds number, providing an effective way to study universal dispersion dynamics. Additionally, the
results agree well with the prediction based on the multifractal model and may help reconcile different
reported scaling laws from laboratory experiments and field studies.
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From the spread of virus-borne aerosols [1] to the
transport of Fukushima-derived radioactive materials in
the atmosphere [2], objects separating over several orders
of magnitude in distance reveal the underlying mixing and
transport dynamics of turbulence. To separate turbulent
diffusion from the mean flow effect, pair dispersion, de-
fined as the relative separation (rðτÞ ¼ jX2ðτÞ −X1ðτÞj) of
two particles at respective positions of X1ðτÞ and X2ðτÞ at
time τ, has become an important quantity to describe the
turbulent transport and mixing.
The mean squared displacement hðrðτÞ − r0Þ2i of par-

ticle pairs with separation growing from r0 to r over a time
interval of τ exhibits three distinct scaling laws, including
the ballistic regime, Richardson superdiffusive regime [3],
and the final diffusive regime [4–7]. The separation of two
particles in the first ballistic range is simply driven by the
initial velocity difference between the pairs. The super-
diffusive dispersion occurs after t0 ¼ ϵ−1=3r2=30 , when the
memory of the initial separation (r0) is presumed to be
forgotten and the dispersion only depends on τ and
the turbulent energy dissipation rate ϵ following
hðrðτÞ − r0Þ2i ¼ gϵτ3 with g being a universal constant.
An important underlying assumption is that, as the Taylor-
scale Reynolds number (Reλ ¼ u0λ=ν, where u0 is the root-
mean-squared fluctuation velocity, the Taylor microscale λ
is

ffiffiffiffiffiffiffiffiffiffiffiffi
15ν=ϵ

p
u0, and ν is the kinematic viscosity of the fluid)

approaches infinity and r0 becomes infinitesimal, this
range expands and eventually dominates the entire
dispersion behavior. But, so far it remains uncertain if
any geophysical flows have ever reached a large enough
Reλ or if the effect of initial separation can really be
ignored.
Laboratory experiments may provide a controlled envi-

ronment to study the pair dispersion problem, but resolving

the cubic scaling is very challenging because it requires the
following conditions: tc ≤ t0 ≪ TL ≤ tR and lc ≤ r0 ≪
L ≤ lR, where tc and lc are the smallest timescale and
length scale that a camera can resolve, respectively. TL and
L are the integral timescale and length scale, respectively.
tR is the residence time for particle pairs to remain in the
view volume of size lR.
To satisfy all these criteria, instead of increasing L as one

would normally do to reach a large Reλ, we did the opposite,
by compressing the flow scales, tc and lc, via a system
specifically designed to raise the mean energy dissipation
rate hϵi. In practice, a vertical water tunnel (V-ONSET) was
constructed (for details, see Supplemental Material [8] and
Ref. [9]). The tunnel was powered by a jet array. By
increasing the jet speed to over 12 m=s, the highest
Reynolds number and energy dissipation rate that can be
reached are Reλ ¼ 435 and hϵi ¼ 0.16 m2=s3, respectively.
Compared with most previous experiments [13–15], the
energy dissipation rate in our experiments was a few orders
of magnitude larger. As a result, the Kolmogorov time
(τη ¼ 0.0035 s) and length scales (η ¼ 55.8 μm) are much
smaller, and the turbulence is close to homogeneous and
isotropic.
By combining the V-ONSET and our in-house dense

particle tracking algorithm, OpenLPT [16], we satisfied the
aforementioned criteria of both temporal and spatial scale
separation. Of these two, the most stringent condition is
temporal scale separation. Compared with previous experi-
ments, i.e., tR=t0 ¼ 0.2 [17], 2 [15], 7 [14], 13 [13], our
experiment reached tR=t0 ¼ 76, which is just barely
enough for observing the Richardson scaling and for
investigating its universality and the finite-Reλ effect.
Once many long particle tracks are obtained from

OpenLPT, particle pairs with a given initial separation r0
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were selected to calculate hðrðτÞ − r0Þ2i. Figure 1 shows
hðrðτÞ − r0Þ2i as a function of τ. Solid lines with different
colors indicate different initial pair separations. Once the
mean squared displacement is normalized by the longi-
tudinal component DLLðr0Þ of the Eulerian second-order
structure function S2ðr0Þ ¼ hðuðrþ r0Þ − uðrÞÞ2i and τ is
normalized by t0, all solid lines collapse with one another
for small τ because DLLðr0Þ correctly accounts for the
ballistic separation velocity between pairs of particles at
early times.
The data covers roughly four decades of τwith about three

decades below and one above t0. For τ larger than t0, the
dispersion of particle pairs with small r0 clearly exhibits a
scaling that deviates from that in the ballistic (∼τ2) or the
diffusive range (∼τ1). The scaling exponent kD is not a
constant; it has two limits, with kD close to 3 for small r0 (the
Richardson scaling) and 1 for large r0 (diffusive). Between
these two limits, kD decreases as r0 increases. For the
smallest initial separation r0 ≈ 0 ∼ 5η (red solid line), the
superdiffusive scaling can be expressed as hðrðτÞ − r0Þ2i ¼
gϵτ3, with g being the Richardson constant. g is believed to
be a key universal constant of turbulence. Here, by fitting
our data, this number is shown to be g ¼ 0.542� 0.003,
which is close to the value previously reported from
simulations [18].
The sameparticle pairs can also be utilized to calculate the

Lagrangian relative velocity, i.e., δr0vðτÞ¼uðX2ðτÞ;τÞ−
uðX1ðτÞ;τÞ. The Fig. 1 inset shows the evolution of
hδr0v2ðτÞi normalized by S2ðr0Þ. At early times, solid
lines with different initial separations all approach one
because δr0v

2ðτÞ at τ ¼ 0 recovers the limit of the

Eulerian second-order structure function S2ðr0Þ. After
τ ¼ t0, different curves exhibit different scaling laws with
the scaling exponent kV clearly depending on r0. For pairs
with r0 ¼ 0–5η (red line), kV is close to 1, i.e., hδr0v2ðτÞi ∝
τ, which is equivalent to the hðrðτÞ − r0Þ2i ∝ τ3 [4,20,21].
As r0 increases, the scaling exponent kV continues to drop in
a manner similar to the trend of kD.
To show the change of kD with r0 at different Reλ, Fig. 2

compiles several different datasets. In addition to our
experiments, including Reλ ¼ 307 and 450, we also expand
the range of Reλ by including other previous works using
direct numerical simulations at Reλ ≈ 38, 240 [18], 300
[22], 350 [18], 550 [23], and 700 [24]. All simulations were
performed in homogeneous and isotropic turbulence sim-
ilar to the conditions in our experiments, and the exponents
were extracted by performing a simple least-square fit for
the range of data between 2t0 ≲ τ ≲ TL=2, with the error
bars marking the 95% confidence interval of the fitted
scaling exponent.
It is surprising to find that all datasets seem to intersect

with one another at a critical initial separation of
rcr ≈ 2–4η, where kD happens to be 3, i.e., Richardson’s
cubic scaling. For r0 larger than rcr, kD drops very quickly
and the rate of decay seems to depend on Reλ and r0. For r0
smaller than rcr, kD clearly exceeds 3 instead of asymp-
totically approaching the Richardson’s limit. Note that we
did not include any data for r0 < η [25,26] because pair
separation in this regime grows exponentially instead of
being governed by a power-law relationship.
To explain this observation, we provide a scaling

transition model to understand the dependence of the
exponent on the Reynolds number. We assume that, after
the initial period of time that is dominated by a ballistic
separation, the pair separation would enter a regime where
the relative velocity between a pair of particles follows
a power-law relationship with time: hδr0v2ðτÞi=u02¼
ðτ=TLÞkV for t0 < τ < TL. Since the scale separation in
time t0=TL can be easily converted to that in space r0=L
based on the relationship of t ¼ r=δru, one can obtain
ðhδr0v2ðt0Þi=u02Þ1þkV=2 ¼ ðr0=LÞkV .
The relative velocity variance at t0 is close to, but slightly

smaller than, the initial relative velocity variance, i.e.,
hδr0v2ðt0Þi < hδr0v2ð0Þi, which is displayed as the dip in
Fig. 1 (inset). This phenomenon was also observed by
Ouellette et al. [5], which was attributed to the effect of the
negative mixed structure function [27]. To account for this
effect, we introduce a constant γ so that δr0v

2ðt0Þ ¼
γδr0v

2ð0Þ (γ < 1). By including two well-known relation-

ships [u02 ¼ ðϵLÞ2=3 [28] and L=r0 ¼ 10−3=4Re3=2λ η=r0]
and also recognizing that δr0v

2ð0Þ is the second-order
Eulerian structure function by definition, we can express
ðγS2ðr0Þ=ðϵLÞ2=3Þ1þkV=2 ¼ ð103=4Re−3=2λ r0=ηÞkV , which
yields a clear relationship between kV and the Taylor-scale
Reynolds number.
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FIG. 1. Relative pair separation hðr − r0Þ2i for r0 ¼ 0–5η,
5–10η, 10–15η, 15–20η, 20–25η, 25–30η, 45–50η, 95–100η,
195–200η, 295–300η, with the color of the increasing r0
gradually changing from red to blue. All previous results have
been shifted up by one decade for clarity; Inset: hδr0v2i
compensated by the second-order structure function S2ðr0Þ.
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The structure function S2ðr0Þ can be explicitly expressed
following the Kolmogorov theory [29], S2ðr0Þ ¼ ϵr20=ð3νÞ
(r0 < r�) or 11C2ðϵr0Þ2=3=3 (r0 > r�), where r� ¼
ð11C2Þ3=4ðv3=ϵÞ1=4 ¼ 10.6η is the transition length scale
between the dissipative and inertial ranges, and C2 is the
Kolmogorov constant, which equals to 2.1. Given the
relationship between kD and kV , i.e., kD ¼ kV þ 2
[4,20,21], we can predict the scaling exponent for pair
dispersion with different initial pair separations. For
r0 < r�, it follows

kD ¼ 3þ 1.5 logð3=γÞ − 2 logðr0=ηÞ
logReλ − 0.5 logð3=γÞ − 1

; ð1Þ

while, for r0 > r�, the expression becomes

kD¼3−
1.5logð11C2γ=3Þ

logReλ−0.67 logðr0=ηÞþ0.5 logð11C2γ=3Þ−1
:

ð2Þ

Richardson’s cubic scaling can be reached only if the
second term in both Eqs. (1) and (2) is zero. For Eq. (1), this
can be accomplished when either Reλ → ∞ or the numerator
becomes 0,which requires r0 ¼ ð3=γÞ3=4η. γ can be estimated
from the dip in Fig. 1 (inset), which is roughly 0.7. Although
whether this number remains the same for other Reynolds
numbers requires further investigations, herewe assume that it
is a constant. Finally, the Richardson scaling can be reached at
the critical initial separation of rcr ¼ 3.0η. For Eq. (2) in the
inertial range, kD can never reach 3 for a finite Reλ because
logð11C2γ=3Þ is always larger than 0. This suggests that the
finite Reλ effect may always be present in the superdiffusive
scaling of pair dispersion if r0 is in the inertial range.
In Fig. 2, the predicted scaling exponent kD is shown for

different Reλ ranging from 38 to 3 × 105. The model seems
to agree both with our experiments and with previous
simulations for the range of Reλ considered. It can be
clearly seen that the model lines consist of two different
regimes. As r0 increases, kD decreases first linearly with
logðr0Þ, following Eq. (1), and then nonlinearly with
1= logðr0Þ, following Eq. (2). Although the model predicts
that kD approaches 3 for all r0 when Reλ → ∞, it is in fact a
slow process because kD ∝ 3 − 1= logðReλÞ. Therefore,
even for a Reynolds number at Reλ ¼ 105 that is beyond
what most natural flows can reach, the effect of the initial
separation is still very important.
Furthermore, the intersection of all curves at rcr=η ¼ 3.0,

where kD recovers Richardson’s cubic scaling, implies that
the dispersion statistics at rcr is free from the Reynolds
number effect. This rcr provides a valuable way to peek into
the asymptotic dispersion statistics at the limit of the
infinite Reynolds number. In particular, we examine the
distribution of the pair separation Δr ¼ rðτÞ − r0 at differ-
ent time delays τ, pðΔr; τÞ. It was suggested by Richardson
that pðΔr; τÞ should follow the functional form of

−β expðΔrαÞ, and α ¼ 2=3 was predicted based on the
experimental observation [3]. However, since then, differ-
ent values of α and shapes of probability density functions
(PDF) have been proposed, including 2=3 [13], 0.5
[30–32], and a variable depending on τ [24,33].
Our experiments suggest that pðΔr; τÞ and α are sensi-

tive to both r0 and τ. The various α reported previously
could be a result of the different r0 values used. Since the
statistics for r0 around 3η does not depend on Reλ, we show
the normalized pðΔr; τÞ for the same initial separation r0 ¼
0–5η at five different time delays τ. These τ are selected so
they are in the range (t0 < τ < TL) where the Richardson’s
cubic scaling law is observed. The measured pðΔr; τÞ is
fitted with −β expðΔrαÞ, and the obtained α is shown as a
function of τ=t0 in the inset, which exhibits a clear linear
relationship with τ from the Richardson-predicted expo-
nent, α ¼ 2=3, to the Gaussian-like exponent, α ¼ 2.
Since a smaller α indicates a PDF with a longer tail, the

results suggest that events of pairs separating much faster
than average occur more frequently at early times (small τ),
which is a signature of intermittency in turbulence. To
evaluate this dispersion intermittency, the high-order

100 101 102 103 104
1

1.5

2

2.5

3

3.5

4

FIG. 2. The dependence of the superdiffusive dispersion scaling
exponent kD on the initial particle separation r0. Solid lines
represent model predictions for different Reynolds numbers
calculated from the model described by Eqs. (1) and (2). The
dashed red line shows the intersection point at rcr=η ¼ 3 for all
Reynolds numbers, and the dash-dotted black line indicates the
model prediction for Reλ → ∞.
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statistics hΔrpi ¼ R
∞
0 rppðr; τÞdr ∼ τζp is calculated,

where ζp is the exponent of dispersion for the order p.
If dispersion in turbulence is not affected by intermit-

tency, by assuming that the superdiffusive regime only
depends on ϵ and the time delay τ, one can easily obtain
hΔrpi ∼ ðϵτ3Þp=2 with ζp ¼ 3p=2. For p ¼ 2, ζ2 equals
three, which agrees with the Richardson cubic scaling. For
higher orders, ζp=ζ2 increases linearly with p, which is
shown as the black solid line in Fig. 3(b). ζp can also be
calculated from hrpi ¼ R

∞
0 −βrp expðrαÞdr. If we set α and

β as fixed constants, as suggested by Richardson, the
scaling exponents are shown as blue diamonds, which
coincide with the black solid line, because constants α and
β indicate that the separation PDF remains unchanged at
different scales with no intermittency.

Experimentally, the scaling exponent ζp can be extracted
directly from experiments by plotting the higher-order pair
dispersion (hΔrpi) against the second-order one (hΔr2i)
using the extended self similarity (ESS) method [34], as
shown in Fig. 3(b) inset. The extracted exponents ζp for p
ranging from 2 to 6 are shown as the green symbols in
Fig. 3(b). In addition to this direct measurement, hΔrpi can
also be estimated from the measured pðr; τÞ in Fig. 3(a)
following hΔrpi ¼ R

∞
0 rppðr; τÞdr, which provides an

indirect way to estimate the exponent ζp. The results are
plotted in Fig. 3(b) as blue symbols.
It is clear that, as p increases, both directly and indirectly

measured ζp systematically deviate from Richardson’s
prediction. The deviation is not as strong as that in the
Eulerian [35] and Lagrangian structure functions [36,37]
because pair dispersion is integrated from the velocity
increment, which tends to smooth out intermittent events.
Nevertheless, the deviation is still a clear indication of
turbulence intermittency in pair dispersion. This finding
is consistent with the aforementioned scale-dependent
pðΔr; τÞ.
To further confirm the observed intermittency, we decide

to model ζp using the multifractal framework [38], which
starts with a relationship between the velocity increment
δuðrÞ at a separation of r: δuðrÞ ∼ ðr=LÞh (h is the fractal
dimension). Since the eddy turnover time τ ∼ r=δuðrÞ, it
yields r ∼ τ1=ð1−hÞ. Based on this, the higher order of r
can be expressed as hrpi ∼ R

h∈I dhτ
ðpþ3−DðhÞÞ=ð1−hÞ ∼ τζ

D
p ,

where DðhÞ characterizes the hierarchy of fractal dimen-
sions that are associated with different intermittency levels.
Based on this equation, the scaling exponent ζDp can be
obtained following

ζDp ¼ inf
h

�
pþ 3 −DðhÞ

1 − h

�
: ð3Þ

If pair dispersion is subjected to similar turbulence
intermittency as in the Eulerian framework, they should
share the same hierarchy of fractal dimensions, i.e., DðhÞ.
For the Eulerian structure functions,DðhÞ is directly related
to the scaling exponent ζEp, which must satisfy the exact
relationship ζE3 ¼ 1 at p ¼ 3. This requirement leads to
DðhÞ ≤ 3hþ 2. Substituting this constraint into Eq. (3)
shows that ζD2 ¼ 3, which is consistent with Richardson’s
prediction. For other orders, we can determine DðhÞ from
the Legendre transform ζEp ¼ infhðph −DðhÞ þ 3Þ [38].
Repeating the same procedure results in a prediction for ζDp ,
which is shown in Fig. 3(b) as a red solid line. This line
overlaps perfectly with the experimental measurement and
captures the deviation from Richardson’s prediction due to
intermittency.
SinceDðhÞ from the Eulerian structure function provides

an excellent prediction for pair dispersion in the Lagrangian
framework, it supports the argument that the dispersion
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FIG. 3. (a) The probability density function of the normalized
particle separation ðΔr2=hΔr2iÞ1=2 for constant initial separation
r0 ¼ 0–5η at different τ. The symbols represent experimental
measurements, and solid lines of the same respective color
indicate the fit to the function of pðΔr; tÞ ¼ −β expðΔrαÞ.
(b) The exponent of pair dispersion, ζDp , with respect to p; Inset:
the ESS plot of the higher-order statistics of the pair separation
Rp ¼ hðr − r0Þpi against the second order.
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statistics for particle pairs at a critical separation rcr
successfully capture some universal characteristics of
turbulence. The various previously reported scaling laws
may be a result of the uncontrolled initial separations and
different Reynolds numbers used.
In summary, our findings suggest that the Richardson

scaling holds either for all initial pair separations at
Reλ → ∞ or for nearly all finite Reynolds numbers at
one critical initial separation rcr ¼ 3η. This rcr represents
the length scale, at which the inertial-range Lagrangian
velocity scale separation can be directly and solely related
to the temporal scale separation. This critical initial
separation provides a valuable way for us to study
dispersion intermittency. The results imply that pollutants
concentrated in a small local region could potentially
disperse and spread much faster than the mean.
Therefore, future predictive models on transport and mix-
ing should consider accounting for the intermittency, finite
Reynolds number, and initial separations altogether.
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