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In experiments and numerical simulations we measure angles between the symmetry
axes of small spheroids advected in turbulence (passive directors). Since turbulent strains
tend to align nearby spheroids, one might think that their relative angles are quite small.
We show that this intuition fails in general because angles between the symmetry axes
of nearby particles are anomalously large. We identify two mechanisms that cause this
phenomenon. First, the dynamics evolves to a fractal attractor despite the fact that the fluid
velocity is spatially smooth at small scales. Second, this fractal forms steps akin to scar
lines observed in the director patterns for random or chaotic two-dimensional maps.
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I. INTRODUCTION

Suspensions of small particles in turbulence determine the physics and chemistry of many
natural processes. The analysis of the underlying highly nonlinear and multiscale dynamics poses
formidable challenges, because any description of the problem must refer to the turbulence that the
particles experience as they move through the fluid. Experiments resolving the particle dynamics
have only recently become possible, and direct numerical simulations (DNSs) of such systems are
still immensely difficult. Recently there has been substantial progress in understanding the dynamics
of spherical particles in turbulence by means of statistical models [1,2].

Yet most solid particles we encounter in nature and engineering are not spherical, such as ice
crystals in turbulent clouds [3], plankton in the turbulent ocean [4–7], and turbulent fiber flows
in industrial processing [8]. Therefore, it is necessary to understand how nonspherical particles
translate and rotate in turbulence [9]. For very small particles, inertial effects are negligible [10],
and the disturbance caused by the particles can be treated in the Stokes approximation [9,11,12].
Understanding the turbulent angular dynamics of nonspherical particles in this limit is a question
of great current interest [9,13–19]. However, even the angular dynamics of a single small rod in
turbulence is quite intricate: Rods tend to align with the local vorticity of the flow [14,18,20].
Vorticity in turn aligns with the second eigenvector of the turbulent strain-rate matrix [21] and
picks up that turbulence breaks time-reversal invariance [22,23]. Polymers tend to align with the
main stretching direction of the flow [24].
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Very little is known about how nonspherical particles orient relative to each other in a turbulent
flow, even in the limit of very small particles whose center-of-mass position x simply follows the
flow (passive particles). How do nearby nonspherical particles align with each other? The simplest
case is that of axisymmetric particles with fore-aft symmetry. The symmetry axes n of an ensemble
of such particles in turbulence form a spatial field n(x, t ). At every point in space and time n is
normalized to unity. Our goal is to determine the geometrical properties of this field. For fore-
aft symmetric particles the problem is invariant under n → −n, so n(x, t ) is in effect a field of
directors. It is plausible that turbulent strains align the particles as they approach, and in this case
one expects the passive director field n(x, t ) to be a smooth function of particle position. However, in
this paper we show that the spatial passive-director patterns of nonspherical particles in turbulence
are not smooth in general, not even at the smallest scales where the turbulent fluid velocities are
smooth functions of position. We show that angles between the symmetry axes of nearby particles
are anomalously large. Our results of DNSs and statistical-model simulations allow us to conclude,
first, that the attractor determining the director patterns is fractal, in general, and second, the steady-
state distribution of angles between nearby particles has power-law tails. We derive a theory based
on diffusion approximations that can at least qualitatively explain these observations and we relate
the power-law tails to steps of different widths that occur in the director patterns.

II. FORMULATION OF THE PROBLEM

The center-of-mass positions x of small particles simply follow the flow u(x, t ),

d

dt
x = u(x, t ), (1)

if their spatial diffusion is neglected. In this case one says that the center of mass is advected by
the flow [1]. The directors of small axisymmetric particles with fore-aft symmetry obey Jeffery’s
equation [11]

d

dt
n = On + �Sn − �(n · Sn)n. (2)

Here O is the antisymmetric part of the matrix A of fluid-velocity gradients at the particle position
and S is its symmetric part. Inertial effects [10] and angular diffusion [25] are neglected in Eq. (2).
The parameter � parametrizes particle shape [11,26]: �=0 for spheres, �=−1 for thin disks, and
�=1 for slender rods. For spheroids

� = (κ2 − 1)/(κ2 + 1), (3)

where κ is the aspect ratio of the spheroidal particle [11]. In the following we consider prolate
particles with � � 0. We use two different kinds of simulations to analyze the director patterns
n(x, t ). First, we employ DNS of a turbulent channel flow to obtain a turbulent velocity field
and integrate Eqs. (1) and (2) numerically to determine the director patterns. Second, we perform
simulations of Eqs. (1) and (2) using a statistical model, representing the small-scale turbulent
velocities as a random Gaussian incompressible, homogeneous, and isotropic field with correlation
length η, correlation time τ , and rms speed u0. The theory employs diffusion approximations that are
valid in the limit of small Kubo number Ku ≡ u0τ/η and that have yielded important insights into
the dynamics of small spherical particles in turbulence [2], just like Kraichnan’s diffusion model for
passive-scalar advection [1]. Our experiments measure the angles between symmetry axes of fibers
advected in a turbulent flow between oscillating grids.

To characterize the director patterns n(x, t ), we measure the statistics of δn(x, t ) ≡ n(x + R, t ) ±
n(x, t ) at small distances R ≡ |R|. The configurations ±n(x, t ) correspond to identical physical
situations, and we choose the sign so that |δn| is minimal. We define the angular structure functions

Sp(R) ≡ 〈|δn|p〉R. (4)
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Here 〈· · · 〉R is a steady-state average over particle pairs conditional on their center-of-mass distance
R. The order p of these moments need not be an integer, and it can also assume negative values. We
consider small separations R between the particles, in the dissipation range of turbulence. In this
range the second-order longitudinal velocity structure function 〈δu2

L〉R of the turbulent flow scales
as [27–32] 〈

δu2
L

〉
R/u2

K = 1
15 (R/ηK )2. (5)

Here δuL = [u(x + R, t ) − u(x, t )] · R̂ is the velocity increment of the turbulent velocity in the
direction R̂ of separation R. This means that the turbulent velocity field is smooth in the dissipation
range. It can be Taylor expanded to give δuL ∝ R. If the director field n(x, t ) were smooth too, then
Sp(R) ∝ Rp for small R, as in Eq. (5). However, our results show that this is usually not the case. In
our DNSs and statistical-model simulations we find instead anomalous scaling of the director field

Sp(R) ∼ (R/ηK )ξp for R/ηK � 1, (6)

with |ξp| � |p|. Since |ξp| � |p| this implies that angles between the symmetry axes of nearby
particles are anomalously enhanced at small separations. This means that the spatial director field
of nonspherical particles is not smooth, in general, so angles between the symmetry axes of nearby
nonspherical particles in turbulence are larger than expected. This is our main result. The remainder
of this paper is organized as follows. In Sec. III we give details about our experiments, DNS, and the
statistical model that we use to analyze the director patterns. Section IV summarizes the results of
our experiments, DNS, and statistical-model analysis. Section V contains a discussion, conclusions,
and an outlook.

III. METHODS

A. Experiment

The experiments measure angle differences between rods near the center of a 1 × 1 × 1.5 m3

octagonal tank between two oscillating grids [31]. Fluorescent dyed rods (length a = 700 μm,
diameter b = 30 μm, and aspect ratio κ = 23.3) are suspended in the flow. We estimate the
particle-shape parameter � by using Eq. (3), the formula for a spheroidal particle. This gives
� = 0.996. Data are shown for two different grid frequencies, 1 and 3 Hz in water with kinematic
viscosity ν = 0.96 × 10−6 m2 s−1. The resulting Taylor-scale Reynolds numbers are Reλ = 140
and 277. The energy dissipation rates of ε = 9 × 10−5 and 2.5 × 10−3 m2 s−3 were calculated
from the mean value of the compensated third-order structure function in the inertial range [31,32].
The Kolmogorov lengths are ηK ≡ (ν3/ε)1/4 = 310 and 135 μm and the Kolmogorov times are
τK ≡ (ν/ε)1/2 = 93 and 19 ms.

In the Reλ = 140 flow the rod length is 2.3ηK, which is small enough that the particles are in
the tracer limit. In the Reλ = 277 flow, the rod length is 5.2ηK. For particles of this size, tumbling
rates are still roughly in the tracer limit [19], but finite-size effects start to become important. The
Stokes numbers of the rods, defined as the ratio of the rod response time to the Kolmogorov time, are
0.002 and 0.01, so the particles behave like neutrally buoyant tracers even though the fluid density
ρf = 1.00 g cm−3 is slightly lower than the particle density ρp = 1.12 g cm−3.

The two experiments used different imaging setups. The lower-Reynolds-number data were taken
with a laser scanning system and three cameras recording 5000 frames per second (fps) [32]. This
data set has 3.8 × 104 frames. Each frame imaged one of eight slabs that were scanned sequentially.
A typical image contains 60 rods within a slab with dimensions 1.5 × 1.5 × 0.3 cm3. The higher-
Reynolds-number data were taken with the imaging system using volume illumination and four
cameras at 450 fps [19]. This data set has 1.5 × 106 frames, each with typically eight rods in view in
an imaging volume with dimensions 2 × 2 × 3 cm3. The seeding densities chosen are a compromise
between obtaining sufficient numbers of rod-angle differences at small distances and minimizing the
overlap of rods in the two-dimensional (2D) images. When rods overlap, it is difficult to separate
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FIG. 1. Analysis of experimental raw data. (a) Image from one camera showing two nearby rods, acquired
at volume illumination with Reλ = 277. The distance between the rods (center to center) is 1.27 mm, about
two rod lengths. (b) Reconstruction of the directors of two nearby rods from the experimental data for the same
pair as shown in (a).

them and measure their 3D positions. We discard such samples. Because rods with large-angle
differences are more likely to overlap in the images, this introduces a sampling bias at small R. We
therefore only report data for R greater than the rod length, where the bias is not large.

The experimental raw data are analyzed as follows. The camera images [Fig. 1(a)] are first
segmented, identifying clusters of bright pixels. The two-dimensional centers of mass of clusters
are then stereo matched and tracked over time using the camera calibration data and a predictive
tracking algorithm [33]. Rod angles are extracted from multiple images using methods described
previously [15,34]. Figure 1(b) shows the three-dimensional reconstruction of the locations and
angles between a pair of nearby rods [same as the pair shown in Fig. 1(a)]. The rods used in these
experiments have an aspect ratio of more than four times that of previous experiments on tracer rods
[15], resulting in a smaller uncertainty of the relative angle, compared to previous measurements.

B. Direct numerical simulations

We perform DNS of a turbulent channel flow using one-way coupling for the particle dynamics:
Given the fluid-velocity field and its gradient, spheroids with shape parameter � move according to
Eqs. (1) and (2). The turbulent channel flow is characterized by the Reynolds number Re∗ = u∗h/ν

based on the wall-friction velocity u∗ and the half-channel height h. The wall-friction velocity is
determined by the wall stress and the fluid density. Since the channel flow is inhomogeneous,
Reλ varies throughout the channel cross section. We take our statistics near the channel center,
in a region of linear size 2ηK, where the turbulent vorticity is approximately homogeneous and
isotropic [35]. In this region we estimate Reλ = u′

rmsλ/ν using the local rms turbulent velocity
u′

rms = 〈|u′|2/3〉1/2 and the Taylor scale λ = u′
rms

√
15ν/ε. The prime denotes the fluctuating part

of the fluid velocity obtained by Reynolds decomposition. The dissipation rate is calculated from
the local turbulent velocity gradients ε = ν〈TrA′TA′〉. We choose Re∗ = 180. Near the channel
center this gives u′+

rms = 0.686, ε+ = 5.4 × 10−3, λ+ = 36.2, Reλ = 24.8, η+
K = 3.68, τ+

K = 13.6,
and u+

K = 0.27. All nondimensional quantities are quoted in wall units, expressed in terms of u∗
and ν. The simulation domain is 12h × 6h × 2h in the streamwise, spanwise, and wall-normal
directions. We apply periodic boundary conditions in the spanwise and streamwise directions and
no-slip boundary conditions at the two walls. We use a pseudospectral method in the periodic
directions and a second-order central finite-difference scheme [36] in the wall-normal direction.
For time integration we use an explicit second-order Adams-Bashforth scheme.
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C. Statistical model

In two spatial dimensions we use a stream function �(x, t ) to represent a smooth, incompressible,
homogeneous, isotropic random Gaussian velocity field u: We take [2]

u = 1√
2

[∂y�,−∂x�]T. (7)

The stream function is constructed as a superposition of Fourier modes with Gaussian random time-
dependent coefficients. The coefficients are chosen such that �(x, t ) has zero mean and correlations

〈�(x, t )�(x′, t ′)〉 = η2u2
0 exp

(
−|x − x′|2

2η2
− t − t ′

τ

)
. (8)

This correlation function defines the Eulerian scales of the flow, namely, the correlation length η

and the correlation time τ . The typical speed is u0 ≡
√

〈u2〉.
In three spatial dimensions, the velocity field u(x, t ) is constructed as the rotation of a vector

field A(x, t ) [2]:

u = 1√
6
∇ ∧ A(x, t ). (9)

The three components of A(x, t ) are independent Gaussian random functions with the same statistics
as �(x, t ). Further details of the statistical model are described in Ref. [2].

IV. RESULTS

This section is organized into two parts: a summary of the experimental and DNS data (Sec. IV A)
and a summary of the statistical-model results (Sec. IV B).

In Sec. IV A we show our results for the angular structure functions Sp(R) that illustrate our key
conclusion, that the probability of observing large angles between nearby particles is anomalously
large. Then we describe our analysis of the anomalous exponents ξp in Eq. (6): for DNSs and
statistical-model simulations in two and three spatial dimensions.

The statistical-model analysis (Sec. IV B) yields three main results. First, the exponents ξp

saturate for large p because the distribution of relative angles has power-law tails (Sec. IV B 1).
Second, these tails result from a steady-state distribution of steps of different widths in the director
patterns that occur when turbulent strains act on particles aligned orthogonal to the main stretching
direction (Sec. IV B 2). We discuss how these steps are related to scar-line singularities observed in
2D random [37], deterministic chaotic [38], and quasiperiodic [39] maps. Third, we show that the
attractor determining the steady-state director patterns is fractal for small � and thus not smooth
(Sec. IV B 3). There is a phase transition: For � < �c the director patterns are fractal, but for
� > �c they become locally smooth. In Sec. IV B 4 we demonstrate that patterns in three spatial
dimensions are similar to the patterns analyzed for the two-dimensional statistical-model system.

A. Anomalous scaling

1. Angular structure functions

Figures 2(a)–2(c) shows our experimental results for the angular structure functions Sp(R)
(symbols). In our experimental apparatus the dissipation range extends up to roughly 10ηK, where
ηK is the Kolmogorov length. More specifically, Fig. 2(d) shows that 〈δu2

L〉R ∝ R2 in this range.
The experimental data in Fig. 2(d) are taken from Fig. 4 in Ref. [31], obtained using the same
measurement apparatus as in this paper, but at a slightly larger Reynolds number Reλ = 285. At
larger separations an inertial-range power law [27–32] emerges (the data are roughly consistent
with 〈δu2

L〉R ∝ R2/3). The DNS data in Fig. 2(d) exhibit dissipation-range scaling 〈δu2
L〉R ∝ R2 up

to approximately 10ηK. There is no inertial-range scaling for the DNS data because the Reynolds
number is quite small, Reλ = 24.8.
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FIG. 2. (a)–(c) Moments 〈|δn|p〉R of differences δn between directors n of nearby nonspherical particles
in turbulence versus their center-of-mass separations R. The experimental results are for rods (length 700 μm,
diameter 30 μm) in a turbulent water tank (Sec. III), with Reλ = 277 and Kolmogorov length ηK = 135 μm
(closed symbols) and Reλ = 140 and ηK = 310 μm (open symbols). Direct numerical simulation results are for
spheroids with aspect ratio κ =23.3 in turbulent channel flow (Sec. III) and Reλ = 24.8 (solid lines). Shown are
small-R fits of (R/ηK )ξp to the DNS data: ξ2 =0.31, ξ1 =0.24, and ξ0.5 =0.17. The data analysis is described in
Sec. III. (d) Longitudinal velocity structure function. The experimental data are taken from Fig. 4 in Ref. [31],
obtained for the same setup as this work (Reλ = 285) (symbols). The DNS results from the present work are
shown by the solid violet line. Also shown is the small-R asymptote (5) in the dissipation range (black dashed
line) and in the inertial range where the scaling is approximately R2/3 (black solid line).

Figures 2(a)–2(c) demonstrate that the angular structure functions decay much more slowly
than Rp in the dissipation range. Also shown are the results of our DNS (solid lines). We see
that experimental and DNS results agree in the range where we have both experimental and DNS
data. In the experiment the range of spatial scales in the dissipative range is too small to extract
reliable values for the scaling exponents, but the DNS results exhibit clear power-law scaling with
anomalous exponents ξp � p for p = 1

2 , 1, and 2.

2. Anomalous scaling exponents

Figures 3(a)–3(c) show DNS results for the exponents ξp, as well as results of 3D statistical-
model simulations. The DNS results shown in Fig. 3(a) are obtained by fitting the DNS data for
log Sp(R) to A + ξp log R. We consider two fitting ranges 0.05 � R/ηK � 0.5 and 0.02 � R/ηK �
0.2. The resulting estimates for ξp are almost the same; the largest discrepancy is 5%. The data
displayed in Fig. 3(a) correspond to 0.05 � R/ηK � 0.5. The statistical-model results are obtained
in a similar way. The values of ξp are obtained by a linear least-squares fit to log Sp(R) = A +
ξp log R. The data are fitted in two ranges 0.005η < R < 0.01η and 0.01η < R < 0.05η. In both
ranges the values of C(�) and ξ∞ converge to the same values, except for � ∼ 1, where differences
of order 0.1 are observed in ξp. The data displayed are for the range 0.01η < R < 0.05η.

Figure 3(a) exhibits good qualitative agreement between these simulations. For small values of
|p|, the exponent ξp is proportional to p,

ξp = C(�)p as p → 0. (10)

To estimate the constant of proportionality, we fit ξp = C(�)p to the DNS data in the range −0.1 �
p � 0.1. The corresponding statistical-model results are obtained from the average value of ξp/p in
the same range, −0.1 < p < 0.1. Figure 3(b) shows the results, how C(�) depends on �. The values
observed in the DNSs and the statistical-model simulations are slightly different, but in both cases
we find C(�) � 1 for small values of �. This observation is explained by the fact that the director
patterns are fractal, as we show below, and this is one source of the large differences between angles
of nearby rods. As � increases, C(�) grows. At large values of � we see that C(�) approaches
unity; however, as long as C(�) < 1 the director field is fractal.
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FIG. 3. Anomalous scaling exponents ξp in Eq. (6). (a) DNS results for ξp versus p for � = 0.3 (•).
Also shown are three-dimensional statistical-model results for � = 0.3 and Ku = 10 (◦). (b) Results of fits
to Eq. (10) for ξp = C(�)p for small |p|: DNS (•) and 3D statistical model (◦). (c) Plateau value ξ∞(�)
[Eq. (11)] versus �: DNS (•) and 3D statistical model (◦). (d)–(f) Same as (a)–(c) but for 2D statistical-model
simulations with � = 0.33, Ku = 0.1 (green �), and Ku = 1 (blue �). The parameter �c is defined in the text
below Eq. (16).

For large values of p, by contrast, ξp tends to a constant. Both the DNS and the statistical-model
simulation show this behavior, characteristic of highly intermittent fields [30]

ξp → ξ∞(�) as p → ∞. (11)

We demonstrate below that this saturation is caused by narrow steps in the director field across
which rods rotate by π . This is a second source of large-angle differences at small R. Figure 3(c)
shows how ξ∞(�) depends on �. The plateau values ξ∞(�) are obtained as averages of ξp in the
interval 4 < p < 5.

For large �, ξ∞(�) is very close to unity. In summary, the scaling exponents are well
approximated by ξp ≈ min{p, 1} in the limit of large �.

Note that the range of � in Figs. 3(b) and 3(c) exceeds the physical limit for slender rods,
� = 1. Equation (3) shows that values of � > 1 correspond to spheroids with imaginary aspect
ratios κ (however, one can construct particles that have � > 1 [26]). It is nevertheless instructive to
consider the limit of large �: We show in Sec. IV B 1 that the problem admits an exact solution for
ξp in the limit � � 1 and � Ku � 1. There we also discuss which insights this solution gives and
how it fails at small values of �.

B. Statistical-model analysis

1. Large-� limit

Figures 3(d)–3(f) show results of 2D statistical-model simulations. The results are very similar
to the 3D case. We therefore begin by analyzing the 2D model. The problem is simplest to analyze
in the white-noise limit Ku → 0, although turbulence corresponds to large Kubo numbers [2]. We
will argue in this section that the white-noise limit nevertheless yields important insights, just like
white-noise approximations for heavy-particle dynamics in turbulence [2] or Kraichnan’s model for
passive-scalar advection [1].

The reason why the white-noise limit is simpler to analyze is that diffusion approximations can
be applied. To make progress in our problem we must currently assume that � � 1 and � Ku � 1.
This means essentially that strain dominates over vorticity in aligning the particles. In this limit
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FIG. 4. Joint distribution P(R, δψ ) of center-of-mass distance R and relative angle δψ in two-dimensional
statistical model for Ku = 0.01 and 0.002 � R/η � 0.08. (a) Simulation results (◦) for � = 21. Also shown is
the large-� theory (12) (red solid line). (b) Same as in (a) but for � = 2/3. The slope of the power-law tail in
the numerical data is approximately −1.5, different from the slope predicted by the large-� theory (red solid
line), which is −2. For still smaller values of � (not shown), numerical results indicate that the distribution
depends on R and δψ separately, not only through δψ/R.

we can compute the steady-state form of the distribution P(R, δψ ) of center-of-mass distances R
and angle differences δψ between particle pairs. Details are given in Appendix A. The result is of
power-law form

P(R, δψ ) = N /
[
1 + 4

3δψ2/R2
]
. (12)

The factor N is a normalization constant. Figure 4(a) shows the results of statistical-model
simulations at Ku = 0.01 and � = 21 for the joint distribution P(R, δψ ) of angle differences and
separations. We see that Eq. (12) is an excellent approximation at small Kubo numbers and large
values of �. Evaluating Eq. (4) with the distribution (12) gives

Sp(R) ∼ 〈|δψ |p〉R ∼
{

apRp for p < 1

bpR for p > 1
(13)

for small R and p �= 1, with coefficients ap = 2−p3p/2 cos(pπ/2) and bp = 2−p+1
√

3π p−2/(p − 1)
(Appendix A). Comparison with Eq. (6) shows that

ξp = min{p, 1} (14)

for � � 1 and � Ku � 1. The saturation of ξp for large p is a consequence of the power-law tail of
P(R, δψ ). Equation (14) is consistent with the large-� numerical results: Figs. 3(b), 3(c), 3(e) and
3(f) show that C ≈ 1 and ξ∞ ≈ 1 down to � = O(1). This indicates that the director patterns are
smooth for � � 1 and � Ku � 1. This is no longer true for small �. In Sec. IV B 3 we show that
the director patterns become fractal at small values of �.

The large-� approximation discussed above fails to account for the fractality observed at small
�. However, numerical simulations demonstrate that the qualitative conclusions remain unchanged.
Figure 4(b) shows that the distribution P(R, δψ ) still has power-law tails, albeit now with exponents
different from −2 (the exponent is approximately equal to −1.5 for � = 2

3 ). For small values of R,
these power-law tails in δψ are cut off at δψ ∼ π/2, independent of R. As a consequence, the
exponents ξp saturate for p � 1, but now at a constant smaller than unity.

2. Scar lines

What causes the power-law tails in P(R, δψ )? Consider a simple model in which strain
is constant in space and time and vorticity is zero. We take A = [[−s, 0], [0, s]] and write

054602-8



PASSIVE DIRECTORS IN TURBULENCE

(a)

(b)

(c)

FIG. 5. Steps in the director field. (a) Results of 2D statistical-model simulations. The angle ψ of the
director with the x1 axis mod π is shown as a function of x1 for a narrow range of x2, for � = 1. (b) Same
as in (a) but for � = 2/3. In both panels Ku = 1 and the range of the x1 axis is 0.7η. The initial condition is
random directors. The simulation time is 20τ . There are identical fluid-velocity realizations for both panels.
(c) Sheetlike steps in steady-state pattern of the azimuthal angle ϕ from 3D statistical-model simulations. Since
ϕ is defined mod π , the color scheme is wrapped in the same way. Initially there are random directors. The size
of the region shown is 0.1η × 0.1η × 0.1η; Ku = 1 and � = 1.

n(x, t ) = [cos ψ (x, t ), sin ψ (x, t )]. Integrating Eqs. (1) and (2) yields

tan ψ (xt , t ) = exp(2�st ) tan ψ (x0, 0). (15)

Thus all initial angles converge toward the extensional strain direction ψ = ±π/2, except for
ψ (x0, 0) = 0, marking the location of steps of height π in the director pattern. These steps are
related to singularities observed in computer simulations of slender rods rotated by 2D random
[37], deterministic chaotic [38], and quasiperiodic [39] maps. These singularities occur where the
extensional eigenvector of S is orthogonal to the initial director pattern n(x0, 0) [37,40], just as the
steps in the example above. In two dimensions, this constraint is satisfied on lines [37–39], termed
scar lines in Ref. [37].

In turbulence A(x, t ) changes as a function of space and time, so new steps are continuously
created, old steps sharpen, and their height approaches π . Since the problem is invariant under
ψ → ψ + π , the steps effectively disappear as they sharpen. This is illustrated in Fig. 5(a) for
� = 1 where the attractor is smooth. Older steps leave thinner traces because they are less likely
to be sampled by particles. We conclude that a steady-state distribution of steps of different widths
develops, independently of the initial condition.

How are these steps related to the power-law tails in P(R, δψ ) and the saturation of the exponents
ξp at large p? For large �, where the director patterns are smooth, we can estimate the width ws

of a step in the x1 direction as ws ∼ π/|∂1ψ |, where ∂1ψ is the derivative of ψ with respect to
x1. In the limit of large � and small � Ku we find, using diffusion approximations (Appendix B),
that P(∂1ψ ) ∼ |∂1ψ |−2 for large values of |∂1ψ |. To obtain the step contributions to the angular
structure function for large p, we note that a step of width ws contributes with weight ws/R to
〈|δψ |p〉R for ws < 2R. Wide steps with ws > 2R give a smooth contribution of order (R/ws)p−1.
Upon integrating over the distribution of ws up to ws � 2R we find that 〈|δψ |p〉R ∼ R for large p,
establishing the connection to Eq. (13).
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FIG. 6. Lyapunov dimension DL from two-dimensional statistical model simulations with Ku = 0.1 and
Ku = 1, as a function of the shape parameter �: DL is shown as blue ♦’s for Ku = 0.1 and as magenta �’s for
Ku = 1. The theory (16), evaluated with Ku = 0.1, is shown as a solid blue line.

3. Fractal director patterns

The discussion in Secs. IV B 1 and IV B 2 applies only in the limit of large � when the director
patterns are smooth. Now we show that the director patterns are fractal at smaller �. Consider first
two dimensions. In this case the phase space of Eqs. (1) and (2) is three dimensional, spanned by the
two components x1 and x2 of the center-of-mass position x and by the angle ψ of n with the x1 axis,
say. We find that the scatter of points in this phase space is not smooth, but fractal. To characterize
the fractal we compute the Lyapunov dimension DL [2,41] to order Ku2 (Appendix C). The result is

DL =
{

3 − 2�2 + 4 Ku2 �2(�2 − 1) for � < �c

2 for � � �c,
(16)

with �c = 1√
2
(1 − 1

2 Ku2). Equation (16) shows that the phase-space attractor is fractal for 0 < � <

�c because DL is not an integer in this range. There is a phase transition at �c and the fractal
dimension DL equals 2 for � > �c, indicating that the attractor is smooth in this range. Figure 6
shows numerical results from statistical-model simulations for DL, in two spatial dimensions. We
observe good agreement with Eq. (16) for small Ku. We also see that DL depends only very weakly
on Ku [note that Eq. (16) does not apply for Ku = 1]. This indicates that preferential-sampling
effects [2] are weak.

For a Gaussian random function f (x) with power-law spatial correlations, Orey [42] derived a
relation between the increments δ f ≡ f (x + R) − f (x) and the fractal Hausdorff dimension D of
the set of points embedded in the (d + 1)-dimensional space with coordinates x and f :

〈|δ f |p〉R ∼ Rp(d+1−D). (17)

To lowest order in Ku, Eq. (16) gives DL ∼ 3 − 2�2. Setting D = DL in Eq. (17) yields C(�) =
2�2, roughly consistent with the numerical results in Fig. 3(e). A more quantitative comparison
would have to take into account that the Hausdorff and Lyapunov dimensions assume, in general,
different values. Figure 5(b) illustrates steps in the director patterns for � = 2/3 where the attractor
is fractal. Steplike structures are still present, but less distinct because the attractor is fractal.

In inviscid one-dimensional Burgers turbulence [43,44] the turbulent velocity structure functions
〈|δu|p〉R obey 〈|δu|p〉R ∼ Rζp at small R and ζp → 1 at large p. Bifractal theory [30] relates the
saturation of the exponent ζp at large p to steps (shocks) in the velocity field. This provides an
insightful analogy: The saturation of the scaling exponents is caused by steps in the spatial field, as
in our problem. However, there are fundamental differences: The velocity field in inviscid Burgers
turbulence exhibits sharp jumps on a fractal set of positions, but the director field is itself fractal,
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FIG. 7. (a) Lyapunov dimension DL from three-dimensional statistical model simulations with Ku = 0.1
(blue ♦’s) and Ku = 1 (magenta �’s), as a function of the shape parameter �. (b) Correlation dimension D2

(red ◦’s) from DNS of a turbulent channel flow, as a function of the shape parameter. Values of � larger than
unity do not correspond to physical rods (Sec. IV A 2).

in addition to exhibiting jumps. How to calculate the exponents in our system for 0 < � < 1 is an
open problem, even in the diffusive limit Ku → 0.

4. Three spatial dimensions

The argument leading to Eq. (15) generalizes to three dimensions. We can therefore conclude
that steps form also in three dimensions. In this case phase space is five dimensional: three center-
of-mass dimensions plus two Euler angles for the azimuthal (ϕ) and polar (θ ) degrees of freedom.
Figure 5(c) shows a director pattern from 3D statistical-model simulations. The value of ϕ is color
coded and plotted as a function of x1, x2, and x3. The spatial pattern is consistent with steps: In a
given x2-x3 plane we see sharp transition lines where ϕ jumps by π , and these lines appear also in
neighboring x2-x3 planes, at different values of x1.

For smaller � we expect that the director patterns are fractal, as in two dimensions. The numerical
results from 3D statistical-model simulations shown in Fig. 7(a) demonstrate that this is the case.
The results indicate that there is a phase transition, as in two dimensions. Since phase space is five
dimensional, DL changes from 5 at � = 0 to 3 at large values of �. For Ku = 1 the critical shape
parameter is approximately �c ≈ 1. Also shown are data for Ku = 0.1. The results for Ku = 1 and
0.1 are slightly different, unlike in two spatial dimensions. This could be due to numerical errors:
The Ku = 0.1 data for DL in three spatial dimensions are the most difficult to obtain among the
displayed statistical-model data. However, we cannot exclude that there is a Ku dependence in three
spatial dimensions. This would indicate that preferential effects [2] or large time correlations matter.

For the turbulent channel flow our conclusions are qualitatively similar, although we could
not determine the Lyapunov dimension reliably because the flow is inhomogeneous and the long
trajectories needed to estimate DL do not remain in the center of the channel where we must take
the statistics. Therefore, we have numerically computed the correlation dimension D2. It is defined
as [45]

P(|δwww|) ∼ |δwww|D2−1 as |δwww| → 0, (18)

where δwww = [δx1, δx2, δx3, δθ, δϕ]T and δθ and δϕ are differences of particle azimuthal angles θ

and polar angles ϕ. The value of the power-law exponent in (18) is obtained by fitting Eq. (18) to
the DNS data, in the range 0.02 < |δwww| < 0.2. We also tested a slightly lower range, from 0.01 to
0.1. This makes only a small difference in the results, but to quantify the error it would be necessary
to measure at substantially smaller values of |δwww|. Our present DNS data do not permit this.
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Figure 7(b) shows that the fractal correlation dimension D2 ranges from 5 at � = 0 to
approximately 3 at large values of �, like the Lyapunov dimension for the 3D statistical model.
However, for the DNS it is difficult to estimate �c precisely. Figure 7(b) indicates that the critical
shape parameter is of order unity, so the steady-state attractor is fractal for generic axisymmetric
particles with fore-aft symmetry, except possibly for very slender rods.

V. DISCUSSION AND CONCLUSIONS

Figure 2 shows experimental and DNS data that illustrate our key result: Angles between the
symmetry axes of nearby particles are anomalously large. We quantified this phenomenon by
analyzing angular structure functions Sp(R) at small spatial scales R. These functions measure the
moments of relative angles between nearby particles. Direct numerical simulation and statistical-
model simulation data demonstrate that the angular structure functions Sp(R) exhibit power laws at
small R, with anomalous scaling exponents ξp. Using diffusion approximations in the limit � � 1
and � Ku � 1, we derived a theory that qualitatively explains the dependence of ξp upon p. The
exponents saturate at large p. This is caused by turbulent strains that form a steady-state distribution
of steps in the director patterns. In the limit of � � 1 the director patterns are spatially smooth.
However, for small �, the director patterns are fractal, and this explains the small-p limit of the
scaling exponents ξp. At large p the exponents saturate, but no longer to unity. The saturation is still
a consequence of steps in the director patterns, but now the steps inherit their properties from the
fractal nature of the attractor.

The experimental angular structure functions agree very well with the DNS results (Fig. 2),
down to separations of the order of the rod length, although the DNS is performed at much smaller
Reynolds number. There is excellent agreement between the DNS results and our statistical-model
predictions. These facts indicate that the mechanisms causing anomalously large angles are robust,
so our theory provides a foundational framework for understanding the relative alignment of
particles in turbulence.

Our problem is related to, yet fundamentally different from, passive-scalar and vector problems
[1,30,46–50]. Instead of the magnitude of a scalar or a vector, we analyze the spatial director field n,
normalized to unity and invariant under n → −n. Moreover, we consider finite particle distances in
the dissipative range of turbulence. This is a two-particle problem, more general than the question
of how spatial gradients of angles evolve, advected by turbulence. The latter dynamics is a single-
particle problem; it refers to an initially smooth manifold in phase space, as does the question of
how the curvature of a material surface evolves in turbulence [51].

An open question is to find the form of the joint distribution P(R, δψ ) of separations R and angles
δψ for finite �. Our numerical results indicate that the distribution has algebraic tails too and that
the power-law exponents vary as a function of particle shape. A related open problem is to derive
the distribution in three spatial dimensions.

In the experiment it is difficult to separate rods that overlap in the camera images. In Fig. 2
we therefore show the experimental data only for distances larger than a rod length. It would be
of great interest to obtain precise data at smaller distances, to systematically study the effect of
hydrodynamic interactions [52,53] in the presence of nontrivial fluid flow.

A more far-reaching and more difficult problem is to understand how inertial effects change
the patterns formed by larger particles. Particle inertia is relatively straightforward to take into
account using the techniques reviewed in Ref. [2]. We anticipate that caustics [54–57] in the angular
dynamics may increase the probability of large angles between nearby particles. For larger particles
it also matters how the particles accelerate the surrounding fluid. There are corrections due to
turbulent shears [10], and convective fluid inertia must matter for rapidly settling particles.

The relative alignment of particles in turbulence is a critical question in many scientific and
engineering problems (including scattering of electromagnetic radiation from icy clouds [3], the
dynamics of fiber suspensions [8], and plankton ecology [4]). Specifically, the relative alignment of
approaching particles affects the rate at which they collide and possibly also collision outcomes. An
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ambitious long-term goal is to derive a theory for the collision rate between nonspherical particles
in turbulence, with industrial fiber flows in mind [8], but also to model encounter rates of motile
microorganisms [4,6] and of organic matter [58] in the turbulent ocean. In this context we must also
ask how breaking of fore-aft symmetry changes the results summarized here. A first step in this
direction is to use the present theory to determine the statistics of differences between the angular
velocities ω = � + �n ∧ Sn of nearby particles. We expect that fractal steps in the director patterns
are important, because the angular velocity depends explicitly on n and upon the shape parameter
�. However, this is just a starting point. The general problem is a very difficult one, yet important
because of its wide range of applications. Our results show that the analysis of statistical models is
a promising way of approaching this impactful question.
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APPENDIX A: CALCULATION OF P(R, δψ) USING DIFFUSION APPROXIMATIONS

Linearizing the dynamics [Eqs. (1) and (2)] for two nearby directors of separation R ≡ x2 − x1

and relative angle δψ ≡ ψ2 − ψ1, we find, in two spatial dimensions,

d

dt
R = KuAR, (A1a)

d

dt
ψ = Kuε jk

[
1

2
Ok j − �nknlS jl

]
, (A1b)

d

dt
δψ = Ku[n jε jl∂iBlkRink − 2�δψn jS jknk]. (A1c)

Here we have represented n as [cos ψ, sin ψ]T and we have expanded the fluid velocity u and
the angular velocity ω in terms of small separations. Equation (A1) is expressed in dimensionless
variables, x′ = x/η, t ′ = t/τ , u′ = u/u0, and we have dropped the primes. Further, B = O + �S,
repeated indices are summed (Einstein summation convention), and ε jl is the two-dimensional
Levi-Cività symbol. For small Kubo numbers, the fluid-velocity gradients and second derivatives
in Eq. (A1) fluctuate rapidly and can be approximated by white noise. In this limit, we approximate
the dynamics (A1) by a four-dimensional diffusion process. For the diffusion approximation to hold
we must require not only that Ku → 0 (white-noise limit), but also that the change in n during
one correlation time τ is much smaller than the magnitude |n| = 1. We find that this change is of
order Ku �n · Sn for large �. Since the magnitude of n · Sn is of order unity in the dimensionless
variables adopted in Eq. (A1), we must require that |�| Ku � 1 for the diffusion approximation to
hold.

We calculate the drift and diffusion coefficients using an expansion in the Kubo number [2]. We
use the dimensionless variables in Eq. (A1). We find that the drift coefficients vanish and that the
diffusion coefficients are given by

DRiRj = Ku2

2
(3δi jR

2 − 2RiRj ), (A2a)
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DRiψ = −Ku2

2
[�(n · R)εi jn j + 2εi jR j + �Rjε jknkni], (A2b)

DRiδψ = Ku2 �δψ[Ri − 2(n · R)ni], (A2c)

Dψψ = Ku2

2
(2 + �2), (A2d)

Dψδψ = 0, (A2e)

Dδψδψ = Ku2

2
[4�2δψ2 + 12�(n · R)2 + (6 − 6� + 3�2)R2]. (A2f)

In the resulting diffusion equation, we change to polar coordinates R ≡ R[cos β, sin β]T. Since
the flow is isotropic, we can remove one angular degree of freedom, leaving a three-dimensional
diffusion equation in terms of R, δψ , and δβ ≡ β − ψ . This three-dimensional equation is hard
to solve in general, but in the limit of large � we have found the solution. Keeping only terms
to highest order in �, the diffusion equation simplifies considerably. In this limit, the steady-state
diffusion equation reads

0 = 8 f + 16δψ∂δψ f + (4δψ2 + 3R2)∂2
δψ f + ∂2

δβ f . (A3)

Here f is a function of R, δψ , and δβ. It is related to the probability distribution P(R, δψ, δβ ) by
f = P/R. To solve Eq. (A3) we attempt a Fourier expansion

f (R, δψ, δβ ) =
∑

m

fm(R, δψ )e2π imδβ . (A4)

This ansatz results in

0 = (8 − 4m2π2) fm + 16δψ∂δψ fm + (4δψ2 + 3R2)∂2
δψ fm. (A5)

The solution of this equation has power-law tails for large δψ/R. The large-δψ/R asymptote of the
solution can be written as a combination of two independent power laws in δψ/R:

fm ∼ am(R)

(
δψ

R

)−3/2+1/2
√

1+4m2π2

+ bm(R)

(
δψ

R

)max{−3/2−1/2
√

1+4m2π2,−7/2+1/2
√

1+4m2π2}
. (A6)

We must require that the tails are integrable to |δψ/R| = ∞. This implies that am(R) = 0 for all
values of m and that bm(R) = 0 for m �= 0. Since the center of mass of the particles is advected in
an incompressible flow, the marginal (spatial) distribution must be uniform. Therefore, we we must
require that ∫ π/2

0
dδψ f0(R, δψ ) = 1

R

∫ π/2

0
dδψP(R, δψ ) ∼ const (A7)

for small values of R. We now match the general m = 0 solution of (A5),

f0(R, δψ ) = 4

3

a0(R) δψ

R + b0(R)

1 + 4
3

δψ2

R2

, (A8)

to the asymptote (A7). As concluded above, we have a0(R) = 0, so we must match b0(R) = 3N /4R
for small values of R, where N is a normalization factor. For the distribution P = f0R we thus
obtain Eq. (12). Evaluating the moments 〈|δψ |p〉R with this distribution yields Eq. (13) for small R
and p �= 1, and the coefficients are given by ap = 2−p3p/2 cos(pπ/2) and bp = 2−p+1

√
3π p−2/(p −

1) for p �= 1. For p = 1 we find logarithmic corrections to power-law scaling, S1(R) ∼ R log R.
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APPENDIX B: CALCULATION OF THE DISTRIBUTION OF Y1 ≡ ∂1ψ

Starting from Eqs. (1) and (2), the joint dynamics of angles and angle gradients Yi ≡ ∂iψ

becomes, in two spatial dimensions,

d

dt
ψ = Ku ε jk

(
1

2
Ok j − �nknl S jl

)
, (B1a)

d

dt
Yi = Ku(n jε jlBlk,ink − 2�Yin jS jknk − YjA ji ), (B1b)

using the same notation as in Appendix A. In addition, Blk,i = ∂i(Olk + �Slk ). In the white-noise
limit the dynamics (B1) describes a three-dimensional diffusion process with drift

Dψ = 0, (B2a)

DYi = 2 Ku2 �[2(n · Y )ni − Yi] (B2b)

and with diffusion coefficients

Dψψ = Ku2
(
1 + 1

2�2
)
, (B3a)

DψYi = Ku2
(−εi jYj − 1

2�nin jε jkYk + 1
2�εi jn jnkYk

)
, (B3b)

DYiYj = Ku2
[

3
2 (2 − 2� + �2 + YkYk )δi j − (1 + 2� − 2�2)YiYj

+ 2�nkYk (niYj + n jYi ) + 6�nin j
]
. (B3c)

In the corresponding diffusion equation, we change to polar coordinates Y ≡ Y [cos α, sin α]T.
Since the flow is isotropic, we can remove one angular degree of freedom, leaving a two-dimensional
diffusion equation in terms of Y and δα ≡ α − ψ . We write the steady-state solution as P(Y, δα) =
g(Y, δα)Y . In the limit of large � the steady-state equation for g takes the form

0 = 24Y 2g + 3Y (1 + 8Y 2)∂Y g + Y 2(3 + 4Y 2)∂2
Y g + (3 + Y 2)∂2

δαg. (B4)

To solve Eq. (A3) we attempt a Fourier expansion

g(Y, δα) =
∑

m

gm(Y )e2π imδα. (B5)

This ansatz results in

0 = [24Y 2 − 4π2m2(3 + Y 2)]gm + 3Y (1 + 8Y 2)∂Y gm + Y 2(3 + 4Y 2)∂2
Y gm. (B6)

The solution of this equation has power-law tails for large Y . The large-Y asymptote of the solution
can be written as a combination of two independent power laws

gm ∼ cmY −5/2+1/2
√

1+4m2π2 + dmY −5/2−1/2
√

1+4m2π2
. (B7)

This solution gives a normalizable probability distribution Pm = gmY for large values of Y if m = 0.
However, solutions with cm = 0 and m �= 0 diverge as gm ∼ Y −2πm for small Y , leaving only m = 0
as a valid solution. It follows that the leading large-Y asymptote of g0 is g0(Y ) ∼ Y −3. The general
m = 0 solution of Eq. (B6) is

g0(Y ) = c0

√
1 + 4

3Y 2 − arccoth
(√

1 + 4
3Y 2

)
[
1 + 4

3Y 2
]3/2 + 4

3

d0[
1 + 4

3Y 2
]3/2 . (B8)
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Using c0 = 0 and d0 = 1 the normalized probability distribution of angle gradients takes the form

P(Y ) =
4
3Y[

1 + 4
3Y 2

]3/2 (B9)

for large �. The distribution of Yi is obtained by noting that the joint distribution P(Y, δα, δψ ) is
uniform in δα and δψ . Therefore, the distribution P(Y, α) is uniform in α. It follows that P(Y1,Y2) =
P(Y )/2πY with Y =

√
Y 2

1 + Y 2
2 . Integrating over Y2 gives

P(Y1) = 2√
3π

(
1 + 4

3Y 2
1

) . (B10)

This distribution has the P(Y1) ∼ Y −2
1 tails mentioned in the main text.

APPENDIX C: CALCULATION OF THE LYAPUNOV DIMENSION DL

The Lyapunov dimension is a measure of the fractal dimension of the attractor in phase space. In
two spatial dimensions, phase space is three dimensional (x1, x2, and ψ), so there are three Lyapunov
exponents σ1 � σ2 � σ3. The sign of the maximal Lyapunov exponent σ1 determines whether small
separations grow (positive sign) or shrink (negative sign) exponentially. The signs of partial sums of
the n upper Lyapunov exponents σ1 + σ2 + · · · + σn determine whether n-dimensional subvolumes
of phase space grow or shrink exponentially. Since the underlying flow is incompressible, the fractal
dimension cannot be smaller than 2 (where σ1 + σ2 = 0 and σ3 < 0) and it cannot exceed 3, the
dimensionality of phase space (where σ1 + σ2 + σ3 = 0). The Lyapunov dimension is defined as
the linear interpolation between these limits [2,41]:

DL ≡ 3 − σ1 + σ2 + σ3

σ3
. (C1)

To evaluate the Lyapunov exponents in Eq. (C1), we first note that two phase-space Lyapunov
dimensions are given by the spatial Lyapunov exponents σ

spatial
1 because the spatial dynamics

is not influenced by the angular dynamics. Also σ
spatial
2 = −σ

spatial
1 . This equality follows from

incompressibility of the flow.
As mentioned above, the Lyapunov exponents are ordered with respect to their size. We discuss

this ordering below. For the moment we refer to the remaining exponent as σ ′. It is determined from
the local dissipation in phase space (and made dimensionless using τ ):

σ ′ = σ
spatial
1 + σ

spatial
2 + σ ′ = σ1 + σ2 + σ3 = 〈∂xẋ + ∂yẏ + ∂ψψ̇〉 = −2 Ku �〈n · Sn〉. (C2)

Using perturbation theory [2] for small values of Ku, the spatial Lyapunov exponents σ
spatial
μ are

given in Ref. [2] [Eq. (114) in that paper, evaluated for St = 0, d = 2, and μ = 1, 2],

σ
spatial
1 ≡ Ku〈R̂ · SR̂〉 = Ku2 −6 Ku4, σ

spatial
2 = −σ

spatial
1 , (C3)

where R̂ is the unit separation vector between a pair of particles. Using a similar expansion, we can
also calculate σ ′:

σ ′ ≡ −2 Ku �〈n · Sn〉 = −2 Ku2 �2 + 4 Ku4 �2(2 + �2). (C4)

We remark that for � = 1, both R̂ and n follow the same dynamics. This implies that σ ′ = −2σ
spatial
1

for � = 1. Before inserting the exponents into Eq. (C1), we must order them. We find that σ1 =
σ

spatial
1 for any value of � and that σ2 = σ ′ and σ3 = σ

spatial
2 if � < �c, where

�c = 1√
2

(
1 − 1

2
Ku2

)
. (C5)
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If � > �c we instead have σ2 = σ
spatial
2 and σ3 = σ ′. Inserting these ordered Lyapunov exponents

into Eq. (C1), we obtain, to second order in Ku, Eq. (16).
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