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Abstract
We developed an open-source Lagrangian particle tracking (OpenLPT) based on the Shake-the-Box (Schanz, Gesemann, and 
Schröder, Exp. Fluids 57.5, 2016) method. The source code of OpenLPT is available on GitHub repository (@JHU-NI-LAB). 
The code features a new method that removes the majority of ghost particles at a high particle image density. The resulting 
percentage of ghost particles drops from 110% to 26% for image density at 0.125 ppp—nearly 84% of ghost particles are 
removed. Extensive tests of OpenLPT using synthetic data sets show that the code produces tracks with accuracy and process-
ing time similar to the previously-reported values. In addition, OpenLPT has been parallelized to run on high-performance 
computing clusters to drastically increase its processing speed. To examine the code’s capability of tracking shadows of small 
tracers for backlit experiments, the blurred-particle effect was also included on synthetic images and OpenLPT was tested 
to process these noisy images. The results show that OpenLPT can also track shadows of a high-concentration of particles 
reliably in 3D. Based on the test, the optimal depth of field (DoF) and particle concentration for future experiments using 
Lagrangian shadow tracking are provided. For example, DoF controlled by the aperture should be set at around half of the 
size of the view area. At this DoF, most particles in the interrogation volume can be tracked, whereas particles outside the 
interrogation volume become too dim to affect results. 40 experimental data sets for a wide range of particle concentrations 
were also used for evaluating the code, and the results show a nice agreement with the synthetic tests.

List of symbols
Ii
part

  Intensity of the ith particle
C  Track coverage (Fig. 3)
F  Track fragmentation (Fig. 3)
Cr  Track correctness (Fig. 3)
�r  Mean position error for reconstructed raw tracks
T  Processing time per frame
DoF  Depth of field
CoC  Circle of confusion
do  Distance between an object and the lens
di  Distance between the image plane and the lens
f  Focal length of the lens
Da  Aperture size
fL  DoF/L

L  Size of the interrogation volume
M  Magnification ratio of the lens
dp  Physical diameter of a particle
de  Diameter of the projected particle image
ds  Diameter of a particle image due to diffraction
df   Diameter of a particle image due to the defocussing 

effect
z  Distance of a particle to the focal plane in the depth 

direction
Ln  Size of the noise zone
Nt  Number of all trackable particles
Ntf  Number of in-focus trackable particles
Ntb  Number of blurred trackable particles
Nn  Number of out-of-focus non-trackable particles
d  D for only trackable particles
D  Average diameter of all particles in pixels on 

images
�  Total image density
�  Effective image density (only for trackable 

particles)
C�  Fraction of pixels occupied by all particles
C�  Fraction of pixels occupied by trackable particles
R  C�∕C�
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�s  Mean position error for smoothed tracks
e  Calibration error
��  Mean distance between reconstructed tracks and 

filtered tracks
��  Triangulation error
l  Average track length

1 Introduction

Multiphase flow is more ubiqitous in nature and in industrial 
applications than single-phase flow, as most flows are always 
seeded or contaminated with elements of a different phase, 
such as gas bubbles entrained in the ocean or oil droplets in 
chemical reactors. Understanding the interaction between 
two phases requires simultaneous measurements of two 
phases. However, in multiphase flow, sometimes two differ-
ent phases have different or even conflicting requirements 
for measurements that have to be resolved first.

For the carrier phase, small-size neutrally buoyant par-
ticles are typically used as tracers. To view them clearly 
on cameras, laser illumination is favorable because it not 
only makes particles appear to be bright dots in front of a 
dark background but also helps to select only the particles in 
the volume of interest. However, for flows that contain bub-
bles or droplets, the interface between two phases is highly 
reflective, leaving shadows and light stripes in the view 
(Jordt et al. 2015). When the concentration of the second 
phase becomes higher, this problem will severely impact 
the ability to acquire accurate tracer data around bubbles 
or droplets. This issue has been resolved in three different 
ways: refractive index matching (RIM) (Budwig 1994), 
laser-induced fluorescence (LIF) (Dovichi et al. 1984), and 
shadow imaging (Zaruba et al. 2007). The RIM technique 
relies on a careful match of refractive indices of two phases, 
which is not suitable for bubbly flow. Although the laser-
induced fluorescence (LIF) can help to distinguish bubbles 
from fluorescent particles. The possible reflection of tracer 
images via the bubble interface can cause large uncertainties 
of tracer velocity (Lindken and Merzkirch 2002). Finally, 
compared with all other methods, the back illumination can 
achieve a clear, sharp shadow projection of a bubble and 
is proven to be an economic and effective way to acquire 
bubble-phase features (Nishino et al. 2000).

The back illumination has also been used as an alterna-
tive to view tracer particles. Particles block light and their 
shadows appear on images in front a bright background. 
For example, particle shadow velocimetry (PSV) (Este-
vadeordal and Goss 2005) uses particle shadow to perform 
the PIV algorithm. Compared with the scattering light, in-
line back illumination requires much lower light intensity. 
Time-resolved measurements at 10 kHz can be reached 
even with a simple LED panel. The technique of PSV was 

also successfully applied to the near-wall velocity meas-
urements as a way to avoid surface glare encountered in 
the laser illumination (Goss et al. 2007). In addition to the 
single-phase measurements, PSV has also been attempted 
in the multiphase-flow measurements. Khodaparast et al. 
(2014) demonstrated the benefits of PSV in both gas–liquid 
and liquid–liquid flows, including a clear detection of both 
phases, the avoidance of strong reflection, as well as the low 
cost. Hessenkemper and Ziegenhein (2018) then extended 
the back illumination to the particle shadow tracking veloci-
metry (PSTV) in bubbly flows, and pointed out that PSTV 
is able to obtain more accurate velocity close to bubbles 
and handle images with a higher particle concentration than 
that in PSV.

For back illumination, the concern is always associated 
with particles outside the interrogation volume but still 
projected on images. This effect has been quantified using 
the idea of depth of correlation (DoC) defined as the depth 
within which the out-of-focus particles still contribute to the 
cross-correlation analysis for PSV (Meinhart et al. 2000). 
The expression of DoC was then derived by Olsen and 
Adrian (2000). Blurring particles introduces non-negligible 
noise to the determined 2D velocity field. In 3D systems, 
although the blurring particles may still pose challenges to 
particle identification and tracking, there is no systematical 
work to evaluate the feasibility and problems.

In this paper, PSV will be extended to the shadow-based 
3D particle tracking. There are two different ways of pursu-
ing it: the particle tracking velocimetry (PTV) (Papantoniou 
and Dracos 1989; Nishino et al. 1989) and the Lagrangian 
particle tracking (LPT) (Ouellette et al. 2006) method. There 
is a subtle but important difference between PTV and LPT: 
LPT intends to obtain long particle trajectories for study-
ing particle dispersion, mixing, and other transport-related 
quantities, whereas PTV focuses on acquiring the Eulerian 
velocity field.

Recently, this distinction between these two methods 
becomes smeared by the advent of a technique called itera-
tive particle reconstruction [IPR, Wieneke (2012)], which 
can iteratively optimize and locate the 3D position of par-
ticles. This method transforms the way that particle images 
are used and it helps one to identify individual particles for 
a particle concentration similar to that in a Tomographic 
PIV (Tomo-PIV) system without many ghost particles. With 
3D positions, particles can be linked from frame to frame 
to construct trajectories, either using the minimal change 
of acceleration (Malik et al. 1993) or the four-frame best 
estimate (4BE) methods (Ouellette et al. 2006).

This idea of triangulation-then-tracking was changed by 
the recently-developed method called Shake-the-Box (STB) 
(Schanz et al. 2016). This method reversed the order of pro-
cedures into tracking-then-triangulation [first introduced by 
Attanasi et al. (2015)] using the existing tracks to predict 
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the particle location in the next frame and use the predicted 
location to find the possible match in 3D. Making use of the 
temporal coherence of tracks STB outperforms the Tomo-
PIV at a high image density (Kähler et al. (2016)). Because 
STB can obtain both the Eulerian and Lagrangian informa-
tion, it has been extensively used in the acquisition of differ-
ent types of flow statistics such as velocity (Schröder et al. 
2015; Schneiders and Scarano 2016), vorticity, dissipation 
(Schneiders et al. 2017), pressure field (Van Gent et al. 2017; 
Huhn et al. 2018), and coherent structures (Schlueter-Kuck 
and Dabiri 2017; Huhn et al. 2017).

In our study, an open-source STB code, so-called open-
source Lagrangian Particle Tracking (OpenLPT), has been 
developed and will be used for testing Lagrangian shadow 
tracking (LST) in our experimental setup. This paper will 
address the concerns of blurred particles and provide clear 
guidelines for future experimental setups.

2  OpenLPT and its performance evaluation

OpenLPT has been developed primarily to provide the com-
munity with an open-sourced STB (Schanz et al. 2016) that 
can accelerate the data processing on high-performance 
computing clusters efficiently. Sharing its source code will 
also help the community to have a common basis of code to 
conduct future method development and uncertainty quan-
tification. In this paper, some key steps of OpenLPT will 
be introduced, and one particular step that helps to remove 
most ghost particles will be discussed in detail. Tests using 
synthetic datasets will also be presented and compared to the 
STB results (Schanz et al. 2016).

2.1  OpenLPT

Before running OpenLPT, camera images have to be pre-
processed to remove noise, and for Lagrangian shadow 
tracking (LST) images have to be reversed so particles 
become bright in front of a dark background. The key steps 
of OpenLPT are briefly summarized in part A of Fig. 1. 
Within the part A, both the original images for the first four 
frames and the residual images will be processed by the 
iterative particle reconstruction (IPR) (part B). IPR runs the 
3D particle reconstruction and refinement (3D-PR, part C) 
step iteratively. For each iteration, particles that have been 
triangulated from the previous 3D-PR will be removed, 
and the residual images are left for the next iteration. In 
3D-PR, the main step includes finding 2D particle center 
by fitting a 1D Gaussian profile around the central pixel in 
each of the two directions (Ouellette et al. 2006). Triangu-
lating these detected 2D particle positions results in a large 
list of matched candidates, many of which are ghost parti-
cles, especially when the particle image density is high. In 

OpenLPT, a new pruning method has been developed (high-
lighted box in part C) to remove the majority of these ghost 
particles; details of this step will be introduced in Sect. 2.2.

One step that has been repeatedly used in both part A 
and C is the so-called shaking. In brief, shaking refers to 
the refinement of 3D particle positions. For every shake, 
the particle position in 3D will be modified in a small width 
and then projected onto all cameras. The difference between 
the projected image and the actual particle image is calcu-
lated, and the 3D position with the least difference summing 
over all pixels will be selected as the particle position. In 
the very beginning, this method starts with a shake width, 
which can be determined based on both the calibration error 
and particle acceleration. After each shake, the same process 
is repeated using a smaller and smaller shake width. Every 
new shake width is half of that used in the previous iteration. 
After shaking, intensity check, similar to the one introduced 
by Schanz et al. (2016), is performed to separate real par-
ticles from ghost ones by calculating the ratio between the 
projection and the actual image intensity averaged over all 
cameras. If this ratio drops below a set threshold, this can-
didate is believed to be a ghost particle and will be removed 
from the triangulation list. Particles passed the intensity 
check are then subtracted from images. The remaining par-
ticles in the residual images have a much lower effective 
image density; they will be processed by IPR (part B and C 
in Fig. 1) through multiple iterations so most of them can 
be recovered.

Particles from the first four frames are connected using 
the velocity field obtained by particle–space correlation 

Fig. 1  Flow chart of the key steps of OpenLPT
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(Novara et al. 2016). From these frames, a number of short 
particle tracks will be established, and these short tracks will 
be fitted with the Wiener filter (Wiener 1949) to predict the 
locations of particles in the next frame. The predicted 3D 
position is “shaken” again locally to seek the closest candi-
date. This breaks the classical triangulation-then-tracking 
scheme used in most particle tracking methods. This new 
algorithm relies on the prediction from an existing track to 
find the 3D position of the particle in the next frame, i.e., 
tracking-then-triangulation. The key difference is that the 
tracking-then-triangulation method makes use of the tempo-
ral coherence of a track as an additional constraint, whereas 
the other scheme does not.

The same intensity check is then conducted for all par-
ticles to remove ghost particles. These connected particles 
will then be subtracted from images to acquire the residual 
images for IPR to detect more particles, These new particles 
will start their own tracks. All tracks are subjected to a lin-
ear-fit check (Schanz et al. 2016). Any track longer than four 
frames with strong position oscillation or a sudden deviation 
from the original track is treated as possible source of error 
and gets deleted in this step. This whole process is depicted 
in part A of Fig. 1. Finally, OpenLPT allows users to track 
particles from the last frame backward to further connect and 
extend the existing tracks.

The processing speed of OpenLPT was carefully exam-
ined and every step that requires many iterations, such as 
stereomatching, particle-space correlation, and shaking, is 
parallelized to optimize the code performance. The details 
of the improvements of OpenLPT can be found in Tan et al. 
(2019). OpenLPT is written in C++, and proven compatible 
on different operation systems and can be easily executed on 
high-performance computing cluster.

2.2  A new algorithm for removing ghost particles

For a high particle image density, particles will first be tri-
angulated, and all matches will be put in a list. The size of 
this match list could be as large as 50 times of the number 
of 2D particles on images, which indicates that each particle 
image can be triangulated for several times. This produces a 
significant number of ghost particles.

The intensity check step that was proposed in IPR and 
STB can effectively remove some ghost particles. However, 
as shown by Schanz et al. (2016), in the first four frames, 

the remaining number of ghost particles can still be about 
4.4 times larger than that of the real particles. These ghost 
matches will inevitably introduce uncertainties of velocity 
estimation, which will impact the following procedures. 
Here we introduce a new algorithm to remove most ghost 
particles right after triangulation, which also improves the 
detection of real ones.

The key of this new algorithm is to use two important 
conditions: (a) every 2D particle position can only be used 
once; and (b) the match needs to be optimal for all cameras. 
These two conditions are not always compatible. So the first 
condition is given a higher priority than the second. To dem-
onstrate this method, an example is shown in Table 1. In this 
particular example, two particles are detected in each cam-
era. But four matches are identified so only two are real and 
the remaining two are ghost matches. The code is designed 
to select the right match out of this list and remove the ghost 
particles.

OpenLPT goes through the entire match list twice. During 
the first time, it does not remove any match, only calculating 
the preference vector P. P marks the number of times that 
this match is selected after comparing with all other compet-
ing matches. P varies between 0 to the total number of cam-
eras, four in our case. For example, match A has a smaller 
triangulation error �� for particle 1 in three cameras: II, III, 
and IV. But match A loses one competition to match B in 
camera I so the total P for Match A is 3. After repeating this 
calculation for all matches in the list, the algorithm will go 
through the entire list again. During the second time, P and 
�� are used to select the right matches and remove the rest. 
Note that between match A and B, match A is selected even 
though match B has a smaller �� because P is given a higher 
priority to optimize the results for all cameras. After match 
A is chosen, match B is removed from the list as we enforce 
the first condition that each 2D particle position can only be 
used once very strictly. Eventually, for this test case, match 
A and C are selected. It can be seen that this algorithm does 
not necessarily pick candidates with the smallest �� ; it seeks 
the optimal results by accounting for all four cameras and 
enforcing one-particle-one-match criteria strictly.

As shown in Fig. 2, our advanced pruning algorithm is 
compared with the alternative method that only uses the 
3D triangulation error with a threshold at 0.6 px. To show 
the difference, we plot the fraction of both real and ghost 
particles as a function of the image density. As the image 

Table 1  An example for the 
algorithm to remove ghost 
particles

Cam ID I II III IV �� (px) P

Match A 1 1 1 1 0.1 3
Match B 1 2 2 2 0.08 1
Match C 2 2 2 2 0.05 4
Match D 2 1 1 1 0.15 0
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density increases, the number of detected ghost particles 
(black lines) increases and the number of real particles 
(red lines) decreases for cases both with (solid lines) and 
without (dashed lines) our pruning method. However, our 
method shows a significant improvement as it systematically 
reduces the percentage of ghost particles. The percentage of 
ghost particles drops from 110 to 26% for image density at 
0.125 ppp after implementing our pruning method.

In addition, it is interesting to observe that the number 
of detected real particles increases by at least 10% after 
implementing our algorithm. Through each iteration in IPR, 
fewer ghost particles result in fewer real particles getting 
incorrectly removed, and thus more real particles can be 

identified. Although 10% seems to be a small number, it is 
actually a significant improvement, as the probability of suc-
cessfully identifying short tracks scales with (Nt∕N)

4 in the 
first four frames. 10% more reconstructed real particles for 
one frame translates to over 46% more real tracks after four 
frames, which is crucial for estimating the velocity field for 
extending short tracks into long ones.

In addition, we also compare the processing time with 
or without our pruning method. As aforementioned, this 
step is computationally expensive, because (a) it requires 
going through a large list of matches twice to remove ghost 
particles; and (b) the code has to find out all matches that 
use repeated particle images in the first iteration for four 
cameras. Surprisingly, after we parallelized this step and 
implemented an algorithm to sort the list, the code becomes 
so efficient that the total processing time with this pruning 
step becomes even shorter than the one without. It indicates 
that the time that this pruning step saves by reducing the 
number of ghost particles is larger than how long this step 
takes. This makes this new algorithm an important improve-
ment of IPR and STB methods.

We also compare the final results from OpenLPT with 
the STB method by Schanz et al. (2016). The details of the 
comparison can be found in the supplemental materials. One 
of the key findings is that the percentage of ghost particles in 
the first few frames is significantly lower than that in STB, 
i.e., OpenLPT starts with 26% ghost particles and original 
STB starts with 400% ghost particles.

2.3  Performance evaluation

OpenLPT is first tested with ideal synthetic data sets with 
zero noise and no blurring particles. The goal is to show 
that OpenLPT can work well with standard laser-illuminated 
experiments with relatively small image noise. We also want 
to demonstrate that the processing speed of the code is simi-
lar to the reported values (Schanz et al. 2016). Three sets of 
synthetic images with different image densities from 0.0125 
particle-per-pixel (ppp) to 0.05 ppp were tested. The code 
can run at a much higher image density (as shown in the 
supplemental materials), but we did not push the density any 
higher in this section as it is challenging for the actual exper-
iments to exceed 0.05 ppp. To demonstrate that the code can 
operate on different platforms, it was tested on both a stand-
ard desktop (Intel i7-8700 six cores at 3.2 GHz frequency) 
and the Maryland Advanced Research Computing Center 
(MARCC), a high-performance computing cluster (HPC) 
consisted of 23,000 cores, each with 2.6 GHz frequency.

2.3.1  Evaluation parameters

Figure 3 illustrates four typical errors induced by imperfect 
tracks, which will be calculated to evaluate the quality of 

0

0.2

0.4

0.6

0.8

1

1.2

0.5

0.6

0.7

0.8

0.9

1

0.02 0.06 0.1

0 0.05 0.1

10 2

10 3

Fig. 2  Comparison of ratio of ghost and true particles, Fg(tot) (left 
y axis), percentage of detected true particles, Fd (right y axis), IPR 
processing time per frame (inset plot) with and without pruning algo-
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Fig. 3  Schematics of four key metrics to evaluate the quality of a 
track: a coverage C = L1∕L0 , b position error � , c track fragmentation 
F, d correct connection Cr = L1∕L2
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tracking results from OpenLPT: (i) Coverage C defines the 
ratio between the number of particles detected by OpenLPT 
and the total number of particles within one track, L1∕L0 , 
as shown in Fig. 3a. (ii) Mean position error � measures the 
deviation of the detected particle positions from the actual 
ones (Fig. 3b). Since each detected track will be processed 
with a Gaussian filter to remove noise, the position error is 
defined for both raw tracks ( �r ) and smoothed ones ( �s ). (iii) 
Track fragmentation F quantifies the number of detected 
segments composing of an original synthetic track (Fig. 3c). 
For the same coverage C, the larger F is, the more short 
tracks that one data set would have. (iv) Correct connec-
tion Cr defines the portion of a detected track that actually 
belongs to the same track in case that the code incorrectly 
connects two separate tracks into one.

2.3.2  Generation of synthetic images

Synthetic images were generated from an isotropic-turbu-
lence data set from the Johns Hopkins Turbulence Databases 
(JHTDB) (Li et al. 2008). The adopted camera configuration 
is the same one used in experiments, which will be intro-
duced in Sect. 5. The same data were down-sampled to dif-
ferent image densities at around 0.0125, 0.025, and 0.05 ppp. 
The details of tests for image density >0.1 ppp are shown in 
the supplemental materials. Each camera has a fixed resolu-
tion of 1024 × 1024 pixels.

To generate the synthetic images, a Gaussian intensity 
profile is used:

where,

(xi, yi) and (xip, yip) are the 2D positions of all pixels and only 
the center pixel of the ith particle on 2D images, respec-
tively. For generating the ideal synthetic images, constants 
a = 125 , b = 1.5 , c = 1.5 and � = 0 were used.

2.3.3  Evaluation results

A list of configuration parameters for applying OpenLPT 
is shown in Table 2. The evaluation results for OpenLPT 
are listed in Table 3. If the results were perfect, i.e., all 
particles can be tracked with no wrong or missing connec-
tions within the view volume, C, F, and Cr should all be 
one, and �r should be zero. For this ideal synthetic data, 
C is about 0.9991 even at the highest image density of 
0.05 ppp, which is slightly better than the reported value 

(1)Ii
part

(xi, yi, p) = ae−(bx
�2+cy�2)

(2)x� =(xi − xip) cos � + (yi − yip) sin �

(3)y� = − (xi − xip) sin � + (yi − yip) cos �

of 0.9986 by Schanz et al. (2016), indicating that the code 
works almost perfectly for the ideal synthetic data set. 
The coverage varies very little from 0.9996 to 0.9991 as 
the image density is quadrupled, so OpenLPT probably 
has not reached its limit. As a result, other three metrics 
are all nearly perfect as well, with very weak dependence 
on the image density. In particular, Cr = 1 for all image 
densities because the code never incorrectly connects two 
tracks into one. The position error �r of raw tracks is about 
0.006 px.

The processing time is important for evaluating the per-
formance of the code, especially when a large amount of 
data needs to be processed. The typical processing time per 
frame for 12,500 particles is around 5 s for OpenLPT run-
ning on a standard desktop (Intel i7-8700 six-core 3.2 GHz 
processors). As reported by Schanz et al. (2016), 12,800 
particles took a server (dual Intel Xeon E5-2680 ten-core 
processors at 2.8 GHz) around 8 s to analyze one frame. The 

Table 2  The configuration parameters for tests with OpenLPT

1 The number in brackets is the iteration times for reduced camera.
2 The maximum intensity on image is 255

Configuration for IPR
Particle projection size 4 × 4 px
Number of total iterations 4(2)1

Number of iterations for shaking 6
2D intensity threshold2 30
Maximum 3D triangulation error 0.6 px
2D search radius for matching 0.5–2 px
Configuration for OpenLPT
Shake width 0.5–0.025 px
Search radius without predictor 10 px
Search radius with predictor 0.5 px
Intensity threshold for identifying ghost particles 0.1 Iavg
Projection factor 1
Predictor for initialization Particle–

space cor-
relation

Number of passes 1

Table 3  Results of performance evaluation for the OpenLPT

1 The average processing time for one frame

Concentration (ppp) 0.0125 0.025 0.05

C 0.9996 0.9995 0.9991
�
r
 (px) 0.006 0.006 0.0065

F 1.0309 1.0313 1.0020
Cr 1 1 1
T
1 (desktop, s) 5 13 40

T
1 (MARCC, s) 1.2 3.9 13.5
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processing time is similar, even though it is not conclusive 
since many conditions are not kept the same in two tests.

The same data sets were also processed by running Open-
LPT on a high-performance computing cluster: MARCC. For 
our tests, the processing time per frame for the data set with 
12,500 particles can be reduced to 1.2 s using 240 cores. Note 
that the computing power of individual processor is not fast 
as that in a desktop because MARCC has been built for over 
4 years.

3  Blurring effect

In this section, we will focus on reproducing the blurring par-
ticle effect in synthetic data sets and use these data sets to 
test OpenLPT. Fig. 4 illustrates the ideal optical configuration, 
including one convex lens with the focal length of f and one 
aperture with the pinhole size of Da . di and do are the image 
distance and object distance, respectively. One particle on the 
focal plane (point a on Fig. 4) appears to be focused, bright, 
and sharp (image intensity is inversed for a better illustra-
tion). Particles out of the focal plane (points b and c on Fig. 4) 
become blurred—the particle image size increases and the 
intensity decreases.

The largest acceptable size of a particle image is referred 
to as the circle of confusion (CoC). For a given optical setup, 
CoC can be translated to the depth of field (DoF), which is 
illustrated as green shaded area in Fig. 4. A particle within DoF 
appears on images with its size smaller than CoC, whereas the 
image of a particle outside DoF appears to be larger.

DoF is related to not only CoC but also the aperture size 
D

�
 , which can be approximated by (Allen and Triantaphillidou 

2012):

(4)DoF ≈
2d2

o
⋅ CoC

fDa

It can be noted from Eq. 4 that DoF changes inversely with 
Da . In experiments, Da can be adjusted to obtain a desired 
DoF. In practice, each experiment will choose its own view 
area of size L, which ranges from micron meters for a micro-
PIV system to meters for a large-scale PIV. Since different 
types of lens with different f are required in these applica-
tions, DoF tends to have a large range accordingly. For the 
rest of the discussion, instead of DoF, the dimensionless 
number fL = DoF∕L (L in our case is fixed at 40 mm) will 
be used to make our test results more general and useful for 
other experiments.

3.1  Synthetic data sets with blurred particles

To test LST with OpenLPT, the first step is to generate syn-
thetic data sets, including the effect of blurred particles. The 
same turbulence data, as the one used in Sect. 2.3.2, was 
adopted here. The bounding box of this data set was scaled 
to match the interrogation volume ( 40 × 40 × 40 mm3 ) in 
our experiments. For LST, as mentioned in Sect. 3, particles 
outside the interrogation volume may still appear on images. 
To reproduce this effect, particles were also put in a volume, 
marked by the dashed line in Fig. 6, outside the interrogation 
volume. This volume is about three times larger than the 
interrogation volume to make sure that the blurred-particle 
effects for any DoF can be faithfully accounted for in syn-
thetic images. The particle concentration in this volume is 
kept the same as that in the interrogation volume.

The diameter of a projected particle image on cameras 
can be estimated by (Olsen and Adrian 2000):

where M is the magnification ratio of the lens, dp is the diam-
eter of a particle. ds is the particle image size due to the 
diffraction effect. ds is important for scattering light illumi-
nation (Ni et al. 2012), in which particles serve as the light 
source and the diffraction makes particles appear larger on 
images. For shadow tracking, this effect is less important and 
hence ignored in the following discussion. df  is the particle 
image size due to the defocussing effect, and it can be related 
to (Rossi et al. 2012):

where z is the distance of particles from the focal plane 
along the optical axis (see Fig. 4).

The intensity profile of the projected particle image is 
estimated by assuming that the integrated intensity over a 
particle image should be equal to the power of light blocked 
by the particle. The particle intensity can be derived as a 

(5)de = (M2d2
p
+ d2

s
+ d2

f
)
1

2

(6)df =
MDaz

do + z

Fig. 4  Illustration of the optical setup to show different key compo-
nents, including the depth of field and three particles (a–c) at differ-
ent locations and their, respective images
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Gaussian function in a form similar to the one used for scat-
tering light illumination (Olsen and Adrian 2000):

where c = JpD
2
a
�2 , Jp is the flux of light blocked by a parti-

cle, � = (x − xp, y − yp) is the pixel position relative to the 
particle center (xp, yp) , and �2 is an adjustable prefactor.

Rather than setting �2 and Jp as some arbitrary constants, 
in our synthetic images, they are determined by making sure 
that particles on the focal plane will have the peak intensity 
at 255 ( A = c∕(4�M2d2

p
d2
o
) = 255 for 8-bit images) and size 

at 3–4 pixels. This essentially sets the highest image intensity 
and the smallest image size for a focused particle, and particles 
that are out of the focal plane will be adjusted based on Eq. 7.

The projection of particles throughout the entire volume 
can be calculated using Eqs. 4–7. In Fig. 5, both a synthetic 
image and an experiment image at the same image density of 
0.016 ppp and fL = 0.45 are shown. These two images are 
similar: focused particles are sharp and bright, whereas defo-
cused particles are blurred and dim. This suggests that the 
calculation successfully reproduces some key features encoun-
tered in LST.

In Eq. 7, the peak intensity, indicated by the prefactor A, 
decreases as particles move away from the focal plane. For 
particles located outside the interrogation volume but with 
the peak intensity still above the threshold Imin , they will con-
tribute to images as noise, so this range is referred to as the 
noise zone. Outside the noise zone, particle image intensity 
falls below Imin—they can no longer be seen or detected. By 
incorporating Eqs. 5, 6, and 7, the length of the noise zone, Ln 
can be derived as:

where L is the length of the interrogation volume. It can be 
seen that Ln ∝ 1∕D2

a
 roughly and DoF ∝ 1∕Da (Eq. 4). It 

(7)I(�, z) = A exp(−B�2) =
c

4�d2
e
(do + z)2

exp

(

−4�2�2

d2
e

)

(8)

Ln =
2

d2
p
+ D2

a

√

d4
p
d2
o
−

(

d2
p
d2
o
−

c

2�M2Imin

)

(

d2
p
+ D2

a

)

− L

indicates that, as one reduces the pinhole aperture size Da 
to gain DoF, Ln increases much faster and significantly more 
blurred particles outside the interrogation volume will get 
projected on camera imaging planes.

As shown in Fig. 6, the volume can be divided into three 
regions, including DoF, interrogation volume, and noise 
zone. The number of particles within these three regions 
are: Ntf , Ntb , and Nn , respectively. Particles in the first two 
regions are trackable, but they do not appear as the same 
image size. The effective image size for the trackable parti-
cles, on average, is d, and the average image size for particles 
in all three regions is D ( D ≥ d ). The average range of D/d 
in all tests is around 1–1.65.

To facilitate the discussion of applying OpenLPT on LST, 
it is important to introduce parameters similar to the image 
density that has been used to quantify the seeding density in 
3D PIV community. The total or the effective image density, 
� or � , are defined to measure the number of all particles 
or only the trackable ones divided by the total number of 
pixels. Since blurred particles do not have the same size as 
the focused ones, we also need a new parameter, image cov-
erage, defined as the ratio of the number of pixels occupied 
by particles to the total number of pixels: C� = �D2 for all 
particles and C� = �d2 for only the trackable ones. In the 
extreme limit C� ≈ 1 , all particles overlap with each other 
and no particle can be tracked. In addition, the ratio between 
two different image coverage R = C�∕C� evaluates the effect 
of blurred particles to the overall performance of the system.

Fig. 5  Examples of a an experiment image and b a synthetic image at 
the same image density of 0.016 ppp and fL = 0.45

Fig. 6  Top view of three types of volumes in our setup, including (i) 
volume in focus (within DoF), (ii) interrogation volume, where parti-
cles can be tracked, and (iii) noise zone, in which particles are blurred 
and cannot be tracked
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4  Applying OpenLPT on the synthetic data 
sets with blurred particles

In this section, we will discuss the results of two different 
tests for two different controlling parameters, the particle 
concentration and fL . Particle concentration refers to the 
number of particles per unit volume, whereas the particle 
image density is used to quantify the number of particles per 
pixel on 2D images. In Sect. 4.1, the particle concentration 
will be fixed, and the effect of fL on tracking results will be 
evaluated. In Sect. 4.2, fL will be fixed at the optimal value 
and different particle concentrations will be examined. These 
two parameters are chosen because they directly impact the 
number of blurred particles, and they can also be controlled 
in our experiments. Therefore, understanding their relation-
ship will help to seek an optimal set of parameters for future 
experiments.

4.1  Effect of fL (fixed particle concentration)

For this test, a fixed number of 12,102 particles were seeded 
in the interrogation volume. As we mentioned before in 
Sect. 3.1, eight times more particles were positioned out-
side the interrogation volume to account for blurred-particle 
effect. All relevant parameters are included in Table 4.

Four different fL are compared with each other and also 
with the laser-illumination case, in which particles outside 
the interrogation volume cannot be seen. The first section 
of the table shows the number of particles in three differ-
ent regions Ntf , Ntb , and Nn . For the smallest fL = 0.25, 
the blurred-particle effect induced by particles in the noise 
zone Nn is small, but only a small portion of particles in 
the interrogation volume are in focus. In the other limit 
for fL = 1 , all particles in the interrogation volume are 
focused. However, it pays the price of including signifi-
cantly more Nn , around 85 times of that at fL = 0.25. This 

rapid growth of Nn as a function of fL is consistent with 
the discussion of DoF and Ln in Section 3.

One possible concern for applying OpenLPT on LST 
is that particles may not have the same image size, poten-
tially putting an important step, particle image projection, 
at risk. In the second section, it is interesting to note that 
the average diameter of all particles (D) remains almost the 
same at around 4.6, insensitive to different DoF. Although 
an increase of fL reduces the image diameter of trackable 
particles, it also expands the noise zone—a greater num-
ber of blurred particles with larger diameter will appear 
on images. These two combined opposing effects lead to 
a similar averaged particle diameter D. The image size of 
only the trackable particles d indeed decreases as a func-
tion of fL , but only from about 4.55–2.78 in a small range. 
This range of particle size is still within the limit that STB 
can handle by adjusting the OTF parameters.

The third section shows the image density and coverage. 
As fL increases, the total image density increases rapidly 
because of the growing Nn . At fL = 1 , over 70% image is 
occupied by particles, likely resulting in a large probability 
of overlapping particle images. At the same time, it can be 
seen that the effective image coverage of only the trackable 
particles C� decreases as fL increases. When fL becomes 
larger than 0.5, the total number of particles within the 
interrogation volume Nt = Ntf + Ntb becomes a constant. 
But the effective image size of the trackable particles 
reduces. The combined effect makes C� drop. Finally, the 
ratio R between the two image coverages decreases signifi-
cantly as fL increases, implying that a large fL may not be 
preferable in LST measurements. Note that this require-
ment is opposite to that in a laser-illuminated system, in 
which a large fL is preferable so all particles within the 
interrogation volume are focused.

Results of a randomly-picked track at two different 
fL = 0.25 and 1 are shown in Fig. 7. Alongside these two 
cases, the original synthetic track (red) and the tracking 
data with no blurred particles (green diamond) are also 
shown. First of all, the test case with no blurred particle 
shows an excellent match with the raw synthetic data, indi-
cating that our OpenLPT code performs as expected. After 
introducing blurred particles, some position variations 
start to appear. The deviation does not seem to depend on 
fL for the range of fL considered.

In Fig. 7b, the position data is processed to obtain the 
particle velocity by applying either the Gaussian ker-
nel (Mordant et al. 2004; Ni et al. 2012) or the B-spline 
method (Gesemann 2015) to raw tracks. Here, we choose 
to use the Gaussian kernel filter. As shown in Fig. 7b, 
the filtered velocity ( fL = 0.25 and 1), indicated by the 
green and blue symbols, is very close to the simulation 
results and noise-free test case. The difference between the 

Table 4  Statistics of trackable and blurred particles for different f
L
 at 

the same particle concentration

f
L

Laser 0.25 0.5 0.75 1

Ntf 11,975 4,031 8,073 10,950 11,975
Ntb 127 5,208 4,029 1,152 127
Nn 0 286 5,580 14,893 24,197
D (px) 2.78 4.59 4.52 4.59 4.6
d (px) 2.78 4.55 3.81 3.15 2.78
� (ppp) 0.0115 0.009 0.0169 0.0257 0.0346
C�(%) 8.92 19.1 34.5 54.2 73.3
� (ppp) 0.0115 0.0088 0.0115 0.0115 0.0115
C� (%) 8.92 18.2 16.8 11.4 8.92
R(%) 100 95 49 21 12
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calculated velocity to the actual velocity from simulation 
is about 7.2% of the velocity magnitude in this test case.

Note that both the position and the calculated velocity of 
the sample track at fL = 0.25 and one exhibit very similar 
variations, suggesting that the accuracy of the tracked particle 
position may not depend much on fL , even though a larger fL 
brings in more blurred particles.

Table 5 compares �r (raw tracks) and �s (smoothed tracks) 
averaged over all tracks for the same synthetic data set tested at 
different fL . In consistent with the observation in Fig. 7, there 

is no trend of either �r or �s on fL . In fact, these two parameters 
are almost constant, suggesting that the track position error is 
not very sensitive to fL . Moreover, the relatively large position 
error due to the presence of blurred particles reduces by half 
after filtering, which is consistent with the previous finding 
(Schanz et al. 2016).

The effects of fL on other tracking quality parameters, C, 
T, F, and Cr (introduced in Sect. 2.3) are illustrated in Fig. 8. 
For coverage C, at around fL = 0.5, C reaches its maximum 
close to one, indicating that most tracks in the interrogation 
volume can be successfully detected at this fL . For fL smaller 
than 0.5, many particles even in the interrogation volume 
become too blurred to be seen (see Table 4 for details). 
Missing tracks ( C ≪ 1 ) is due to, rather than the tracking 
algorithm, the loss of particles on images. For fL > 0.5 , all 
particles in the interrogation volume can be detected and 
tracked, but the growing number of blurred particles outside 
the interrogation volume starts to increase the noise level. 
However, this effect is not significant because the coverage 
drops only by 2% as the percentage of blurred particles on 
images increases from 32 to 67%.

For track fragmentation F and correct connection Cr, 
both of them approach 1 as fL increases, suggesting fewer 
fragmented and more accurate tracks even with more blurred 
particles appearing on images. This is a little couterintuitive 
as it seems that adding noise does not affect the result even 
help to improve it. In fact, this test involves two competing 
effects. Although increasing fL will introduce more blurred 
particles, it also makes more particles in the interrogation 
volume focused. Since the contrast between the focused 
bright particles and the blurred dim particles is large for 
fL > 0.5 , OpenLPT has no problem identifying the focused 
particles and the tracks remain long and intact.

0 0.1 0.2 0.3 0.4
0.8

1.2

1.6

(a)

(b)

Fig. 7  A comparison of the same track, including both a the position 
on the Y–Z plane (at X = 0 ) and b the velocity magnitude along the Y 
direction, from data sets synthesized with different optical parameters

Table 5  Position error of unfiltered and filtered tracks

f
L

0.25 0.375 0.5 0.75 1

�
r
 (px) 0.59 0.52 0.56 0.56 0.50

�
s
 (px) 0.28 0.28 0.28 0.28 0.28

0.8

1

0

200

400

1.02

1.06

1.1

0.25 0.5 0.75 1 0.25 0.5 0.75 1
0.98

0.99

1

(b)(a)

(c) (d)

Fig. 8  The dependence of a coverage C, b processing time T, c track 
fragmentation F, and d correct connection Cr on the normalized 
depth-of-field fL
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Note that both F and Cr do not change much in the range 
of fL considered. So they are not the dominant factors to be 
considered for designing experiments. We also compare the 
dependence of the processing time on fL . As expected, the 
increasing number of blurred particles significantly length-
ens the processing time, especially for fL > 0.5.

In sum, the general principle of designing an experiment 
using OpenLPT for particle shadow tracking is to set DoF 
smaller than the size of the interrogation volume, ideally 
a half of it. At this value, it is a good balance between the 
quality of the tracking results and the total processing time. 
The noise level remains low and the results are comparable 
to that in a laser-illuminated case.

4.2  Effect of particle concentration (fixed fL = 0.5)

The key benefit of OpenLPT and STB is to track a high 
concentration of particles. In this section, we want to test if 
the presence of blurred particles will affect that capability 
of OpenLPT. For this test, fL is fixed at the optimal value 
at 0.5, so the noise zone length Ln is also a constant. As we 
increase the number of particles in the interrogation volume, 
the blurred particles outside increases accordingly to keep a 
constant particle volume concentration. The ratio between 
the number of trackable particles and blurred particles is 
around 2.16, as shown in Table 4.

The maximum total number of particles inside the inter-
rogation volume is set at 27,500, which corresponds to 
� = 0.038 ppp and C� = 78% . The effective image density 
is � = 0.026 ppp, which is lower than the upper limit of 0.08 
ppp for some recent laser-illuminated experiments (Schanz 
et al. 2016). Nevertheless, after the tests, it seems that we 
have not reached the maximum particle concentration that 
OpenLPT can handle. But we capped at this number to be 
consistent with experiments.

Figure 9 shows that the number of detected particles by 
OpenLPT, Nd , and the track coverage, C, as a function of 
the total number of particles in the interrogation volume 
Nt = Ntf + Ntb . Nd monotonically increases with Nt linearly, 
and it does not seem to deviate from the linear relationship 
for the range of Nt considered. Nd can be fitted with the num-
ber of particles on an image N� (or Nt ): Nd = 0.52N� + 780 , 
which will be used to compare with the experimental results 
later. In addition, the black dashed line indicates an ideal 
case that all particles on images can be tracked, i.e., Nd = Nt . 
Although the data seems to deviate from this ideal line grad-
ually as Nt grows, the deviation remains small compared to 
the total number of particles, and it did not show any abrupt 
transition at a large Nt . This suggests that Nt has not reached 
the limit in the synthetic data.

The track coverage reduces by around 2% for every 
increase of 10,000 particles in Nt , whereas it drops only 
by 0.08% for the same increase of Nt in the zero-noise test 
case (see Table 3 for details). 2% is still very insiginificant 
change of coverage as nearly 95% of tracks can be covered 
at Nt = 27, 500 . This shows that applying OpenLPT on 
LST does not generate uncertainties as large as one may 
think. In fact, the quality of tracks is comparable to that 
from the laser-illuminated cases.

Other parameters such as processing time, posi-
tion error, track fragmentation, and correct connection 
are listed in Table 6. As expected, the processing time 
increases as Nt grows. However, all other parameters do 
not depend on Nt . This is promising as the increased num-
ber of blurred particles do not necessarily affect the quality 
of tracks at all for the range of concentration considered. 
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Fig. 9  The number of detected particles Nd and the coverage C as 
functions of the particle concentration Nt or  the number of particles 
on an image N�

Table 6  Processing time, position error, track fragmentation and cor-
rect connection of tracks obtained from images at different particle 
concentration

N
t

12,500 17,500 20,000 25,000 27,500

T (s) 33 60 143 171 138
� (raw, px) 0.52 0.52 0.52 0.56 0.51
� (filtered, px) 0.26 0.28 0.28 0.28 0.28
F 1.0404 1.0398 1.0386 1.0416 1.0389
Cr 0.9965 0.9958 0.9952 0.9940 0.9949
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This suggests that we can simply choose the highest effec-
tive image density at � = 0.026 ppp for our experiments.

5  Experiment results

5.1  Experimental setup

All experiments were conducted in an experimental facility, 
V-ONSET (Vertical Octagonal Non-corrosive Stirred Ener-
getic Turbulence) (Masuk et al. 2019), as shown in Fig. 10a. 
This vertical water tunnel was built to study turbulent mul-
tiphase flow at high energy dissipation rates, specifically 
targeting deformable bubbles/droplets interacting with sur-
rounding flow.

The octagonal test section (top view: Fig. 10b and side 
view: Fig. 10a,c) is chosen to allow optical access from mul-
tiple locations covering the entire perimeter. This is designed 
primarily for reconstructing complex 3D shapes of bubbles 
and droplets, but it can also be used for LST. Six high-speed 
cameras were used for experiments. In this paper, only four 
cameras were used for testing OpenLPT. The camera con-
figuration is shown in Fig. 10b, c, and four LED panels were 
dedicated for each one of the four cameras to provide the in-
line back illumination. On top of the test section, an unique 
3D-printed jet array is designed to merge the mean flow 
coaxially with 88 independently-controlled jets. High-speed 
jets allow us to vary the turbulence characteristics in the test 
section. The details of this facility can be found in Masuk 
et al. (2019).

5.2  Experimental procedure

Before conducting tests, OpenLPT is very sensitive to the 
camera calibration. Wieneke (2018) pointed out that the 
calibration error needs to be controlled within 0.4 pixel for 
iterative particle reconstruction (IPR). To achieve this goal, 
a calibration procedure was developed: 

1. By imaging a common calibration target, rough estimate 
of the camera parameters can be acquired using different 
calibration models. For our code, we chose to use the 
pinhole Tsai model (Tsai 1987).

2. The calibration results can be improved using the Vol-
ume Self-calibration method (VSC). In distinction 
from the existing VSC (Wieneke 2008), our method is 
a simple non-linear optimization method to minimize 
the triangulation error of the chosen particles. For this 
particular step, a low-concentration of tracer particles 
( < 0.001 ppp) uniformly distributed in the volume are 
used. This step allows a large search radius to find all 
matches, which increases the possibility to find a glob-
ally-optimized set of parameters.

3. Finally, the actual experimental data set with a high par-
ticle concentration is used for VSC. For both this step 
and the previous step, we select particles that have long 
trajectories and reduce the number in some overpopu-
lated regions to ensure a uniform concentration across 
the entire volume.

5.3  Data analysis

Forty experimental data sets covering a range of particle 
image density from 0.005 to 0.022 ppp have been col-
lected to evaluate the performance of OpenLPT. Each data 
set contains 21,800 frames collected at 4000 fps. For all 

Fig. 10  a Picture of test section and camera configuration, b top view of all cameras and their positions and orientations, c side view of the water 
tunnel and cutaway view of the jet array
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experiments, an effective focal length of the lens is around 
188 mm, and the aperture size of 8.55 mm was kept con-
stant for all experiments. Based on these parameters and 
the circle of confusion at four pixels (also used for the 
synthetic data in Sect. 3), the calculated DoF was about 
22 mm, based on Eq. 4. The size of the interrogation vol-
ume L is roughly 49 mm, and thus fL is 0.45, which is 
close to the optimal value of 0.5 obtained in the synthetic 
tests. Other experimental configurations were presented 
in Sect. 5.1, and OpenLPT is applied to processing the 
experimental data on MARCC.

Trajectories spanning 50 frames from one data set are 
shown in Fig. 11 with each track color coded by its instan-
taneous velocity magnitude. Each trajectory was filtered 
by a Gaussian kernel (Mordant et al. 2004), and the filter 
length and width are determined to remove noise contained 
in the acceleration variance (Ni et al. 2012). The difference 
between the filtered and raw positions is used to quantify 
the position error � . For this test data set, the average � is 
about 0.01 mm, which is only half of the calibration error 
and one order-of-magnitude smaller than the average par-
ticle displacement of 0.15 mm between two consecutive 
frames, indicating that the blurred particles have a weak 
impact on the triangulation error and the tracking results 
are reliable at this fL.

The relationship between the average number of 
detected 3D particles Nd per frame and the total number 
of particles on each image N� is shown as closed blue 
circles in Fig. 12. The data are scattered probably because 
of the varying calibration error. Since the non-linear opti-
mization used in VSC depends on the initial parameters 
and the particles used, the VSC results are slightly dif-
ferent for every high-concentration data set. The calibra-
tion error, e, for each data set is shown in Fig. 12. As 
N� increases, there is little change of e, implying a very 
weak dependence of e, if at all, with the total number of 

particles. This observation is consistent with our expecta-
tion, as the entire two-steps VSC (low and high concentra-
tions) is designed to make sure the particles selected for 
calibration are accurate and uniformly distributed over the 
entire volume, and most important, not sensitive to the 
concentration.

Nevertheless, we occasionally will have data sets that 
tend to have a large e even after VSC. Two cases are high-
lighted by two vertical dashed lines, which help to connect 
high e to their corresponding Nd . It can be seen that, when 
e is large, the number of particles detected becomes smaller 
because not all particles in the volume can be identified.

Despite the variations, Nd increases monotonically with 
N� , and this relationship can be fitted with a linear rela-
tionship, Nd = 0.5N� + 1500 , as shown by the red line. The 
green dashed line is acquired from the synthetic data set 

Fig. 11  Sample trajectories from one experimental data a with and b without the mean flow (the actual particle size is only about 1/15 of the line 
width). Each track is color coded with the instantaneous velocity magnitude
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Fig. 12  The number of detected particles Nd (left axis) and the cali-
bration error e (right axis) as functions of the total number of parti-
cles on each image N�
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that has already been shown in Fig. 12. It is quite surpris-
ing that the red line and the green dashed line agree to each 
other extremely well, despite the clear distinction between 
the experimental data and the synthetic data. For example, 
the synthetic data set does not include many effects, such 
as the optical aberration, calibration error, non-uniform 
light intensity, and Gaussian random noise on images. The 
only effect that was included in the synthetic data set is 
the blurred-particle effect. The nice agreement between 
two data sets implies that the blurred-particle effect is the 
strongest noise in LST, and the way that the synthetic data 
were generated successfully captured that. At fL = 0.5 , 
only half of the visible particles on images are actually 
trackable. The slope of the experimental data is a perfect 
0.5, which indicates that most of the trackable particles 
have been successfully identified by the code despite the 
noise created by the other half. This powerful technique 
suggests that the code can deal with around 13,000 par-
ticles using 1M pixels cameras very easily, and the limit 
of our OpenLPT coupled with LST has not been reached.

Finally, the quality of trajectories was examined by 
determining two different metrics: (i) the position error 
�� = �r − �s between the raw and filtered tracks (for details, 
see Sect. 2.3.1) and (ii) the average trajectory length l. For 
experiments, since it is impossible to know the true par-
ticle positions in a track a priori, the filtered track is used 
as a reference to calculate �� , which essentially assumes 
that most position noise is random and can be removed by 
a low-pass filter efficiently. This assumption has been sup-
ported by our tests using the synthetic data set, as shown 
in Fig. 7.

�� seems to grow gradually as N� increases, whereas 
the synthetic data suggest that � does not change with N� 
(Table 6). This difference could be a result of either the 
variation of calibration error e in experiments or other 
types of noise that was not included in the synthetic data. 
To test which one is the dominant effect, �� is also plotted 
against the calibration error e, as shown by the red cross 
in Fig. 13. The data show a similar trend and even a simi-
lar level of variations, suggesting that the observed trend 
is likely to be a result of the variations of the calibration 
error e in experiments.

Fig. 13b shows the dependence of the average track 
length l with N� . Again, similar to the discussions on �� , 
the scatter of the data is clear and probably also because of 
the calibration error. The decrease of the mean track length 
as N� increases is very clear, which is not surprising as the 
track length is always sensitive to noise. Such an adverse 
effect can hardly be seen from the results in the synthetic 
cases in Sect. 4, which suggests that this may not be due to 
the noise induced by the blurred particles but other types 
due to non-uniform light intensity or random noise. One 
way to solve this problem is to use the postprocessing step 

to splice this broken tracks into longer ones using the six-
dimension matching algorithm (Xu 2008) that has been 
developed before for Lagrangian particle tracking.

6  Conclusion

In this paper, we first introduce the algorithm and struc-
ture of OpenLPT. Although it is based on the shake-the-
box method by Schanz et al. (2016), we improved the part 
how ghost particles are identified and removed. At the high-
est particle image density at 0.125 ppp, the new algorithm 
reduces the ghost particle from 110% to 26%. This was 
achieved based on a new pruning algorithm that optimizes 
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Fig. 13  a Position error between the raw and filtered tracks, �� , as a 
function of the total number of particles on each image N� and cali-
bration error e, b The averaged length of tracks l (frames) as a func-
tion of N�
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the match list so each 2D particle image can only be used 
once and the match that is ideal in most cameras is selected. 
This step not only reduces the number of ghost particles 
and increases the number of detected true particles; it also 
shortens the processing time. OpenLPT has also been tested 
extensively on multiple synthetic data sets with a range of 
image densities from 0.0125 to 0.125 ppp. The details of 
the comparison are shown in the supplemental materials. In 
addition, one of the key motivations of developing OpenLPT 
is to parallelize the code for running on high-performance 
computing (HPC) clusters. In this paper, we clearly show 
that running on HPC can speed up the process significantly.

The second part of the paper is to test the performance of 
the method on particle shadow tracking. Images with blur-
ring particles were synthesized and processed using Open-
LPT. From the calculation, it becomes obvious that, as the 
aperture size drops, the size of the noise zone expands faster 
than DoF, and more blurred particles outside the interroga-
tion volume start to appear on images.

Tests with blurring particles were carried out at differ-
ent DoF and a range of particle concentrations. As DoF 
increases, although the track qualities, including track frag-
mentation and correctness, have improved as particles in 
the interrogation volume become more focused; the number 
of blurred particles increase substantially—processing time 
soars and the track coverage starts to drop for fL > 0.5 . As 
a result, we recommend future experiments use fL = 0.5 for 
a balance between the processing speed and accuracy for 
OpenLPT or other 3D particle shadow tracking methods.

Finally, following the lesson learned from the synthetic 
data, experiments with fL = 0.45 (close to the optimal value 
of fL = 0.5 ) and L = 49 mm were adopted for tests. Results 
of the detected particles as a function of the total number of 
particles on images show an excellent agreement with the 
synthetic data sets, despite a scatter of the experimental data 
due to the calibration uncertainty. This test also suggests 
that OpenLPT can track shadows of a high concentration 
of particles, and the blurring-particle problem can be man-
aged as long as one pays attention to the selection of the 
aperture size.
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