Mechanical Engineering 2018 Spring Seminar Series: Class 530.804

April 12, 2018 @ 3:00 pm – 4:00 pm
210 Hodson Hall

“Light-based tools for investigating mechanisms and prevention of alcohol-induced congenital heart defects”

Presented by Professor Andrew Rollins
Biomedical Engineering and Medicine, Case Western Reserve University

Fetal alcohol syndrome (FAS) results from alcohol exposure during pregnancy and commonly includes growth retardation, craniofacial defects, and neurological abnormalities. Additionally, as high as 54% of live-born children with FAS have been shown to have congenital heart defects (CHD). Much remains unclear regarding the mechanisms of FAS-associated cardiac defects, especially on the influential role of altered early cardiac function (hemodynamics, conduction, biomechanical forces, etc.). This is largely due to a lack of imaging tools suitable for measuring this complex, miniscule, active organ. We have employed optical imaging tools based on optical coherence tomography (OCT) and optical conduction mapping to address these limitations. A quail model of FAS mimics a binge-drinking episode at gastrulation (week 3 in humans), when the embryo is highly vulnerable to the induction of CHDs. Two developmental stages were investigated: when the hearts were fully septated with four-chambers, and earlier, at looping stages when many important morphological changes happen. In rescue experiments, methyl donor compounds were introduced simultaneously with ethanol. Our results suggest that early functional abnormalities may serve as a mechanism for FAS-induced CHDs. Preliminary data show that Betaine and other methyl donors have the potential to rescue FAS-induced CHDs.

Dr. Rollins is a Professor of Biomedical Engineering at Case Western Reserve University, where he serves as Associate Chair for Undergraduate Education. His research interests are in the development and application of advanced biomedical optical technologies, especially optical coherence tomography (OCT), and including optical stimulation and imaging of electrophysiology. Current projects apply these technologies to the study of developmental cardiology, endoscopic imaging of cardiovascular disease, and measuring mechanical properties of the cornea.

Back to top