When: Apr 04 2019 @ 3:00 PM
Where: 26 Mudd Hall
26 Mudd Hall

Uncovering new mechanisms in biological and engineering architectured materials
Presented by Professor Pablo D. Zavattieri
Lyles School of Civil Engineering, Purdue University
Our ability to improve more than one mechanical property in most engineering materials has been somewhat limited in the past by the inherent inverse relation between these desired properties often found in man-made materials. On the other side, Nature has evolved efficient strategies to synthesize materials that often exhibit exceptional mechanical properties that significantly break those trade-offs. In fact, most biological composite materials achieve higher toughness without sacrificing stiffness and strength in comparison with typical engineering material. Interrogating how Nature employs these strategies and decoding the structure-function relationship of these materials has opened up a new set of concepts in materials engineering. Considering the current progress in material synthesis and manufacturing, these new concepts have converged to the field of architectured materials. In this talk, I will describe some interesting mechanics problems that we encountered as we studied some extraordinary species, and how we can translate these lessons learned to architectured materials. In particular, I will focus on two different examples: One is related to Bouligand architectures, a naturally-occurring architecture typically found in arthropods such as the Mantis Shrimp, and its capability to promote delocalization to mitigate catastrophic failure. The second example is related to a family of architecture materials whose unit cells have multiple stable configurations inspired by competing auxetic mechanisms found in Nature. Implementation of some of those ideas to cellular architectured material guided us to the development of reusable energy absorbing materials.
Dr. Pablo Zavattieri is a Professor of Civil Engineering and University Faculty Scholar at Purdue University. Zavattieri received his BS/MS degrees in Nuclear Engineering from the Balseiro Institute, in Argentina and PhD in Aeronautics and Astronautics Engineering from Purdue University. He worked at the General Motors Research and Development Center as a staff researcher for 9 years, where he led research activities in the general areas of computational solid mechanics, smart and biomimetic materials. His current research lies at the interface between solid mechanics and materials engineering. His engineering and scientific curiosity has focused on the fundamental aspects of how Nature uses elegant and efficient ways to make remarkable materials. He has contributed to the area of biomimetic materials by investigating the structure-function relationship of naturally-occurring high-performance materials at multiple length-scales, combining state-of-the-art computational techniques and experiments to characterize the properties. His current research program includes the study of naturally-occurring architectures and the translation to engineering materials. Prof. Zavattieri is the recipient of the NSF CAREER award, the Roy E. & Myrna G. Wansik Research Award, he is a National Academy of Engineering Frontiers of Engineering Alumnus and a National Academy of Science Kavli Frontier of Science Fellow. He was also appointed a Purdue University Faculty Scholar for the period 2015-2020.