Department of Mechanical Engineering 2018 Fall Seminar Series

When:
September 20, 2018 @ 3:00 pm – 4:00 pm
2018-09-20T15:00:00-04:00
2018-09-20T16:00:00-04:00
Where:
210 Hodson Hall

Soft Robotics for Controlled Interaction with the World

Presented by Professor Mark Cutkosky
Fletcher Jones Professor, Department of Mechanical Engineering
Stanford University

As robots move beyond manufacturing applications to less predictable environments, they increasingly can benefit, as animals do, from integrating sensing and control with the passive properties provided by particular combinations and arrangements of materials and mechanisms. This realization is partly responsible for the recent proliferation of soft and bioinspired robots.

However, many structures and mechanisms in nature are not uniformly soft. Rather, they are selectively soft – highly compliant in certain directions, or when loaded in a certain way, but stiff or inextensible when loaded differently. Such tuned materials and mechanisms, whether in animals or robots, can provide several kinds of benefits, including energy storage and recovery, increased physical robustness, and decreased response time to sudden events. This talk will explore these interrelated concepts using examples from several bioinspired mobile robots that exploit selectively soft materials and structures when interacting with objects and surfaces in the environment.

Mark R. Cutkosky is the Fletcher Jones Professor in the Dept. of Mechanical Engineering at Stanford University. He joined Stanford in 1985, after working in the Robotics Institute at Carnegie Mellon University and as a design engineer at ALCOA, in Pittsburgh, PA. He received his Ph.D. in Mechanical Engineering from Carnegie Mellon University in 1985. Cutkosky’s research activities include robotic manipulation and tactile sensing and the design and fabrication of biologically inspired robots. He has graduated 48 Ph.D. students and published extensively in these areas. He consults with companies on robotics and human/computer interaction devices and holds several patents on related technologies. His work has been featured in Discover Magazine, The New York Times, National Geographic, Time Magazine and other publications and has appeared on PBS NOVA, CBS Evening News, and other popular media.

Cutkosky’s awards include a Fulbright Faculty Chair (Italy 2002), Fletcher Jones and Charles M. Pigott Chairs at Stanford University, an NSF Presidential Young Investigator award and Times Magazine Best Innovations (2006) for the Stickybot gecko-inspired robot. He is a fellow of ASME and IEEE and a member of Sigma Xi. Cutkosky’s laboratory and research can be found at http://bdml.stanford.edu

Back to top