24th Annual James F. Bell Memorial Lecture in Continuum Mechanics

October 11, 2018 @ 3:00 pm
210 Hodson Hall
3400 N Charles St
Baltimore, MD 21218
Deana Santoni

“Printing Soft Matter in Three Dimensions”

Presented by Professor Jennifer A. Lewis
Hansjörg Wyss Professor of Biologically Inspired Engineering , Paulson School of Engineering and Applied Sciences, Harvard University


3D printing enables one to rapidly design and fabricate materials in arbitrary shapes on demand. I will introduce the fundamental principles that underpin both droplet- and filamentary printing methods. I will then describe the development of new functional, structural and biological inks as well as printhead designs that are vastly expanding the capabilities of 3D printing. Finally, I will highlight several examples from our recent work, including the fabrication and characterization of soft electronic, robotic, and shape-morphing architectures.

Jennifer A. Lewis is the Wyss Professor for Biologically Inspired Engineering in the Paulson School of Engineering and Applied Sciences and a core faculty member of the Wyss Institute at Harvard University, where she co-leads the 3D Organ Engineering Initiative. Her research focuses on the directed assembly of functional, structural, and biological materials. She is an elected member of the National Academy of Sciences, National Academy of Engineering, National Academy of Inventors, and the American Academy of Arts and Sciences. She has received numerous awards, including the National Science Foundation Presidential Faculty Fellow Award, the American Chemical Society Langmuir Lecture Award, the Materials Research Society Medal Award, the American Ceramic Society Sosman Award, and, most recently, the Lush Science Prize. Her work on microscale 3D printing was highlighted as one of the “10 Breakthrough Technologies” by the MIT Technology Review, while her bioprinting research was named “one of the top 100 science stories” by Discover Magazine. Her work has enjoyed broad coverage in the popular media. To date, she has co-founded two companies that are commercializing technology from her lab.

Back to top